
We present a randomized algorithm for the approximate nearest neighbor problem in d-
dimensional Euclidean space. Given N points {xj} in R

d, the algorithm attempts to find
k nearest neighbors for each of xj , where k is a user-specified integer parameter. The
algorithm is iterative, and its CPU time requirements are proportional to T ·N ·(d ·(log d)+
k · (log k) · (log N)) + N · k2 · (d + log k), with T the number of iterations performed. The
memory requirements of the procedure are of the order N · (d + k).
A byproduct of the scheme is a data structure, permitting a rapid search for the k nearest
neighbors among {xj} for an arbitrary point x ∈ R

d. The cost of each such query is
proportional to T · (d · (log d) + log(N/k) + k2 · (d + log k)), and the memory requirements
for the requisite data structure are of the order N · (d + k) + T · (d + N · k).
The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed
by a local graph search. We analyze the scheme’s behavior for certain types of distributions
of {xj}, and illustrate its performance via several numerical examples.

A Randomized Approximate Nearest Neighbors
Algorithm

Peter W. Jones†, Andrei Osipov‡, Vladimir Rokhlin⋆

Research Report YALEU/DCS/RR-1434
Yale University

September 14, 2010

† This author’s research was supported in part by the DMS grant #0602635 and the ONR
grants #N000140910108, #N000140910340; ‡ this author’s research was supported in part
by the AFOSR grant #FA9550-09-1-02-41; ⋆ this author’s research was supported in part
by the ONR grant #N00014-10-1-0570 and the AFOSR grant #FA9550-09-1-02-41.

Approved for public release: distribution is unlimited.
Keywords: Approximate nearest neighbors, randomized algorithms, fast random rotations

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
14 SEP 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
A Randomized Approximate Nearest Neighbors Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University ,Department of Computer Science,New Haven,CT,06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

113

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction 3

2 Mathematical Preliminaries 4
2.1 Euclidean Space . 4
2.2 Analysis . 5
2.3 Probability . 7
2.4 Pseudorandom orthogonal transformations 11

3 Analytical Apparatus 13

4 The Randomized Approximate Nearest Neighbors algorithm (RANN) 18
4.1 The Nearest Neighbor Problem . 18
4.2 Informal description of the algorithm . 18

4.2.1 Initial selection . 18
4.2.2 “Supercharging” . 20
4.2.3 Overview . 20
4.2.4 Query for a new point . 22

4.3 Detailed description of the algorithm . 23
4.3.1 Initialization . 23
4.3.2 A single iteration of the algorithm 24
4.3.3 Supercharging . 25
4.3.4 Query for a new point . 25

4.4 Cost analysis . 26
4.5 Performance analysis . 29

4.5.1 Average distance to true nearest neighbors 29
4.5.2 Distances to points in a given quadrant 32
4.5.3 Average distance to suspects . 34
4.5.4 Proportion of suspects among true nearest neighbors 38

5 Numerical Results 40
5.1 Numerical illustration of the analysis . 41

5.1.1 Experiment 1: distance to true nearest neighbors 41
5.1.2 Experiment 2: distance to suspects 42
5.1.3 Experiment 3: proportion of suspects among true nearest neighbors 47
5.1.4 Description of Figures 2-5 . 51
5.1.5 Observations . 54

5.2 Illustration of the performance of the algorithm 56
5.2.1 Experiment 4: performance of RANN 56
5.2.2 Observations . 58

6 Miscellaneous 61
6.1 Version of RANN for highly asymmetric distributions 61

2

1 Introduction

In this paper, we describe an algorithm for finding approximate nearest neighbors (ANN)
in d-dimensional Euclidean space for each of N user-specified points {xj}. For each point
xj , the scheme produces a list of k ”suspects”, that have high probability of being the k
closest points (nearest neighbors) in the Euclidean metric. Those of the ”suspects” that are
not among the ”true” nearest neighbors, are close to being so.

We present several measures of performance (in terms of statistics of the k chosen
suspected nearest neighbors), for different types of randomly generated data sets consisting
of N points in R

d. Unlike other ANN algorithms that have been recently proposed (see
e.g. [9]), the method of this paper does not use locality-sensitive hashing. Instead we use
a simple randomized divide-and-conquer approach. The basic algorithm is iterated several
times, and then followed by a local graph search.

The performance of any fast ANN algorithm must deteriorate as the dimension d in-
creases. While the running time of our algorithm only grows as d · log d, the statistics of the
selected approximate nearest neighbors deteriorate as the dimension d increases. We provide
bounds for this deterioration (both analytically and empirically), which occurs reasonably
slowly as d increases. While the actual estimates are fairly complicated (see Section 4.5),
it is reasonable to say that in 20 dimensions the scheme performs extremely well, and the
performance does not seriously deteriorate until d is approximately 60. At d = 100, the
degradation of the statistics displayed by the algorithm is quite noticeable.

An outline of our algorithm is as follows:

1. Choose a random rotation, acting on R
d, and rotate the N given points.

2. Take the first coordinate, and divide the data set into two boxes, where the boxes are
divided by finding the median in the first coordinate.

3. On each box from Step 2, we repeat the subdivision on the second coordinate, obtain-
ing four boxes in total.

4. We repeat this on coordinates 3, 4, etc., until each of the boxes has approximately k
points.

5. We do a local search on the tree of boxes to obtain approximately k ”suspects”, for
each point xj .

6. The above procedure is iterated T times, and for each point xj , we select from the
T · k ”suspects” the k closest discovered points for xj .

7. Perform a local graph search on the collections of suspects, obtained in Step 6 (we
call this local graph search ”supercharging”). Among k2 ”candidates” obtained from
the local graph search, we select the best k points and declare these ”the suspected
approximate nearest neighbors”, or ”suspects”.

The data structure generated by this algorithm allows one to find, for a new data point y,
the k suspected approximate nearest neighbors in the original dataset. This search is quite
rapid, as we need only follow the already generated tree structure of the boxes, obtained in

3

the steps listed above. One can easily see that the depth of the binary tree, generated by
Steps 1 through 4, is log2(N/k). This means that we can use the T trees generated, and
then pass to Step 7 (see Sections 4.2.4, 4.3.4).

Almost all known techniques for solving ANN problems use tree structures (see e.g. [5],
[9]). Two apparently novel features of our method are the use of fast random rotations
(Step 1), and the local graph search (Step 7), which dramatically increases the accuracy of
the scheme. We use the Fast Fourier Transform to generate our random rotations, and this
accounts for the factor of log d that appears in the running time (see Section 2.4 for details).
Our use of random rotations replaces the usual projection argument used in other ANN
algorithms, where one projects the data on a random subspace. As far as we know, the use
of fast rotations for applications of this type appears first in [2] (see [3] and the references
therein for a brief history). The use of random rotations (as in our paper) or random
projections (as used elsewhere in ANN algorithms) takes advantage of the same underlying
phenomenon; namely the Johnson-Lindenstrauss Lemma. (The JL Lemma roughly states
that projection of N points on a random subspace of dimension C(ε) · (log N) has expected
distortion 1+ε, see e.g. [10].) We have chosen to use random rotations in place of the usual
random projections generated by selecting random Gaussian vectors. The fast random
rotations require O(d · (log d)) operations, which is an improvement over methods using
random projections (see [13], [14]).

The N × k lookup table arising in Step 7 is the adjacency matrix of a graph whose
vertices are the points {xj}. In Step 7 we perform a depth one search on this graph, and
obtain ≤ k + k2 ”candidates” (of whom we select the ”suspects”). This accounts for the
factor of k2 in the running time. Due to degradation of the running time, we have chosen
not to perform searches of depth greater than one.

The algorithm has been tested on a number of artificially generated point distributions.
Results of some of those tests are presented in Section 5 below.

The paper is organized as follows. In Section 2, we summarize the mathematical and
numerical facts to be used in subsequent sections. In Section 3, we develop the analytical
apparatus to be used in the analysis of the algorithm in the case, where the points {xj}
are distributed according to the Gaussian law. In Section 4, we describe the Randomized
Approximate Nearest Neighbors algorithm (RANN) and analyze its cost and performance.
In Section 5, we illustrate the performance of the algorithm with several numerical examples.
In Section 6, we discuss possible generalizations and modifications of the algorithm.

2 Mathematical Preliminaries

In this section, we introduce notation and summarize several well known facts to be used
in the rest of the paper.

2.1 Euclidean Space

Suppose that d > 0 is a positive integer. We denote by R
d the d-dimensional linear Euclidean

space. The vectors in R
d are denoted by bold lower case letters, e.g.

x = (x(1), . . . , x(d)) . (1)

4

We denote the Euclidean (or l2) norm of x by

‖x‖ = ‖x‖2 =
√

x(1)2 + · · · + x(d)2. (2)

Suppose that B = {x1, . . . ,xN} is a collection of N points in R
d and that an integer i is

between 1 and N . We denote by xt(i,j) the jth nearest neighbor of xi. For a subset A of
B, we denote by xt(i,j,A) the jth nearest neighbor of xi in A.

Suppose that d ≥ L > 0 are positive integers. Suppose further that

σ = σ1 . . . σL, µ = µ1 . . . µL, σi, µj ∈ {+,−} (3)

are two words of symbols +,− of length L. We define the degree of contact Con(σ, µ)
between σ and µ to be the number of positions at which the corresponding symbols are
different. In other words,

Con(σ, µ) = |{i : 1 ≤ i ≤ L, σi 6= µi}| . (4)

The following definition illustrates the concept of degree of contact.

Definition 1. Suppose that L > 0 is a positive integer, and that σ is a word of symbols
+,− of length L, as in (3). We define σ

0 = σ, and, for j = 1, . . . , L, we define σ
j to be the

word obtained by altering the jth symbol in σ, and leaving the others unchanged. In other
words, for all i = 1, . . . , L,

σ
j
i =

σi, i 6= j,

+, i = j, σi = −,

−, i = j, σi = +.

(5)

The words σ
0, . . . ,σL are precisely those words, whose degree of contact with σ is either

zero or one.

In a mild abuse of notation, we say that two disjoint sets Aσ and Aµ (or their elements)
have degree of contact j if Con(σ, µ) = j. For example, x and y have degree of contact 1
if x ∈ Aσ, y ∈ Aµ and σ, µ differ at precisely one symbol. We define the subset Qd

σ of R
d

by the formula

Qd
σ =

{

x ∈ R
d : sgn(x(i)) = σi, i = 1, . . . , L

}

. (6)

In other words, a vector x ∈ R
d belongs to Qd

σ if and only if the signs of its first L
coordinates coincide with the corresponding symbols of the word σ.

2.2 Analysis

In this section, we summarize some well known facts from the real and complex analysis.
These facts can be found in [1], [11], [15], [16].

Suppose that x > 0 is a positive real number. In agreement with the standard practice,
we define the real gamma function by the formula

Γ(x) =

∫ ∞

0
tx−1e−t dt. (7)

5

Suppose that d > 1 is an integer. The d-dimensional volume of the d-dimensional unit ball

Bd((0, . . . , 0), 1) =
{

x ∈ R
d : ‖x‖ ≤ 1

}

(8)

is given by the formula

Vol (d) =
πd/2

Γ (d/2 + 1)
. (9)

The (d − 1)-dimensional area of the hypersphere ∂Bd((0, . . . , 0), 1) is given by the formula

Area (d) = d · Vol (d) =
d · πd/2

Γ (d/2 + 1)
. (10)

We denote the positive part of the d-dimensional hypersphere of radius r > 0 by

S+
d (r) =

{

x ∈ R
d : ‖x‖ = r, x(j) > 0, j = 1, . . . , d

}

. (11)

The error function is an entire function C → C, defined by the formula

erf(z) =
2√
π

∫ z

0
e−t2 dt. (12)

The complementary error function is an entire function C → C, defined by the formula

erfc(z) =
2√
π

∫ ∞

z
e−t2 dt. (13)

For all complex z ∈ C,

erf(z) + erfc(z) = 1. (14)

Suppose that f : R → C is a continuous function in L1(R) (that is, f is defined on the
real axis and is absolutely integrable). We define its Fourier transform hf : R → C by the
formula

hf (x) =

∫ ∞

−∞
f(t) · eixt dt. (15)

If the function hf itself belongs to L1(R), then the Fourier inversion formula holds, that is,
for all real t

f(t) =
1

2π

∫ ∞

−∞
hf (x) · e−ixt dx. (16)

Definition 2 (average). Suppose that d > 0 is a positive integer, Q ⊆ R
d is a subset of R

d,
and f : Q → R is a function. Suppose further, that the integral of f over Q is well defined
and finite, and also

0 <

∫

Q
1 < ∞. (17)

We define the average of f over Q by the formula

Avg
Q

(f) =

∫

Q f
∫

Q 1
. (18)

6

2.3 Probability

In this section, we summarize some well known facts from the probability theory. These
facts can be found in [1], [6], [7], [8].

We say that the discrete random variable X has binomial distribution Bin(N, p) with
integer parameter N > 0 and real parameter 0 < p < 1, if for all integer k = 1, . . . , N the
probability that X equals to k is given by the formula

P {X = k} =

(

N

k

)

· pk · (1 − p)N−k . (19)

The binomial distribution describes the sum of N independent identically distributed (i.i.d.)
random variables, that take value 1 with probability p and value 0 with probability 1 − p.
Its expectation and variance are given by the formulae

E [Bin(N, p)] = N · p, Var [Bin(N, p)] = N · p · (1 − p) . (20)

The one-dimensional standard normal distribution N(0, 1) with mean zero and standard
deviation one is defined by its probability density function (pdf)

fN(0,1)(t) =
1√
2π

e−t2/2, −∞ < t < ∞. (21)

Its cumulative distribution function (cdf) is given by the formula

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt =

1

2
·
(

1 + erf

(

x√
2

))

. (22)

Suppose that d > 0 is a positive integer. We say that the random vector x has standard nor-
mal d-dimensional distribution N(0d, Id), if all of its coordinates are independent standard
normal random variables.

Suppose now that x ∼ N(0d, Id). Then ‖x‖2 has distribution1 χ2
d with pdf

fχ2
d
(t) =

td/2−1 · e−t/2

2d/2 · Γ(d/2)
, t > 0. (23)

Its expectation and variance are given by the formulae

E
[

χ2
d

]

= d, Var
[

χ2
d

]

= 2d. (24)

Also, if a ∈ R
d is a fixed vector and we denote λ = ‖a‖2, the random variable ‖x−a‖2 has

distribution2 χ2(d, λ) with pdf

fχ2(d,λ)(t) = e−λ/2
∞

∑

j=0

(λ/2)j

j!
fχ2

d+2j
(t), t > 0. (25)

1 Chi-square with d degrees of freedom.
2Noncentral chi-square with d degrees of freedom and noncentrality parameter λ.

7

Its expectation and variance are given by the formulae

E
[

χ2(d, λ)
]

= d + λ, Var
[

χ2(d, λ)
]

= 2 (d + 2λ) . (26)

The Fourier transform of the pdf of χ2(d, λ) for all real x is given by the formula

∫ ∞

−∞
fχ2(d,λ)(t) · eixt dt = exp

[

iλx

1 − 2ix

]

·
(

1√
1 − 2ix

)d

, (27)

where the principal branch of the complex square root is taken.
The beta distribution B(α, β) with shape parameters α, β > 0 is defined by its pdf

fB(α,β)(t) =
Γ(α + β)

Γ(α)Γ(β)
· tα−1 (1 − t)β−1 , 0 < t < 1. (28)

Its expectation and variance are given by the formulae

E [B(α, β)] =
α

α + β
, Var [B(α, β)] =

αβ

(α + β)2 (α + β + 1)
. (29)

Definition 3 (order statistic). Suppose that N > 0 is a positive integer, and that X1, . . . , XN

is a sequence of real random variables. Suppose further that i is an integer between 1 and
N . The ith order statistic X(i) is the random variable, obtained by taking the ith smallest
value among X1, . . . , XN . In other words, we choose a permutation π = π(X1, . . . , XN) of
the numbers {1, . . . , N}, such that

Xπ(1) ≤ Xπ(2) ≤ · · · ≤ Xπ(N), (30)

and then define

X(i) = Xπ(i). (31)

The following theorem illustrates Definition 3 by providing an elementary bound on the
expectation of order statistics for positive random variables.

Theorem 1. Suppose that N > 0 is a positive integer, and that X1, . . . , XN is a sequence
of i.i.d. real positive random variables with expectation µ. Then, for any i = 1, . . . , N ,

E
[

X(i)

]

≤ N

N + 1 − i
· µ. (32)

Proof. By contradiction, suppose that (32) does not hold. In other words, for some i,

E
[

X(i)

]

>
N

N + 1 − i
· µ. (33)

Obviously, for all j = i, . . . , N ,

E
[

X(i)

]

≤ E
[

X(j)

]

. (34)

8

Also, due to linearity of the expectation,

N
∑

j=1

E
[

X(j)

]

=

N
∑

j=1

E [Xj] = N · µ. (35)

We combine (30), (31), (33), (34) and (35) to conclude that

N · µ ≥
N

∑

j=i

E
[

X(j)

]

≥ (N − i + 1) · E
[

X(i)

]

> N · µ, (36)

in contradiction to non-negativity of µ. ¥

The following well known theorem describes the distribution of order statistics of uniform
random variables.

Theorem 2. Suppose that N > 0 is a positive integer, and that U1, . . . , UN are i.i.d.
uniform random variables in (0, 1). Then, for any i = 1, . . . , N , the distribution of the
order statistic U(i) is given by the formula

U(i) ∼ B(i, N + 1 − i), (37)

where B(i, N + 1 − i) is the beta distribution, whose pdf is defined via (28).

Definition 4 (random vector conditioned on a set). Suppose that d > 0 is a positive integer,
and that x is a real random d-dimensional vector with pdf fx. Suppose further that Q is a
subset of R

d and that the probability that x is in Q is positive. In other words,

P {x ∈ Q} =

∫

Q
fx(y) dy > 0. (38)

The random vector x|Q (x conditioned on Q) is defined by its pdf

fx|Q(y) =

{

fx(y)/ P {x ∈ Q} y ∈ Q,

0 y /∈ Q.
(39)

For example, if X ∼ N(0, 1), then |X| is the standard normal variable conditioned on
(0,∞). Moreover, its pdf is given by the formula

f|X|(t) = fN(0,1)|(0,∞)(t) =

√

2

π
· e−t2/2, t > 0. (40)

Definition 5 (bounded in probability). Suppose that Y1, Y2, . . . is a sequence of real random
variables. We say that this sequence is bounded in probability, written as

YN = Op (1) , (41)

if for any ε > 0 there exists M(ε) > 0 such that for all integer N > 0,

P {|YN | > M(ε)} ≤ ε. (42)

9

Definition 6 (big-O in probability). Suppose that Y1, Y2, . . . is a sequence of real random
variables, and that a1, a2, . . . is a sequence of non-zero real numbers. We say that

YN = Op (aN) , (43)

if the sequence {YN/aN}∞N=1 is bounded in probability, in other words,

YN

aN
= Op (1) . (44)

For example, suppose that Y1, Y2, . . . is a sequence of i.i.d. random variables with mean
µ and standard deviation one. Then, due to the central limit theorem,

N
∑

k=1

Yk = N · µ + Op(
√

N) = N ·
(

µ + Op

(

1√
N

))

, (45)

in the sense of Definition 6.

Theorem 3. Suppose that µ and σ > 0 are real numbers, and X1, X2, . . . is a sequence of
i.i.d. real random variables. Suppose further, that g : R → R is a continuously differentiable
function, and that

g′(µ) 6= 0. (46)

Suppose also that

D

lim
k→∞

√
k · (Xk − µ) = N(0, σ2), (47)

in other words, the sequence of Xk, shifted by µ and rescaled by
√

k, converges in distribution
to N(0, σ2). Then,

D

lim
k→∞

√
k · (g(Xk) − g(µ)) = N(0, σ2 ·

(

g′(µ)
)2

), (48)

and, in addition, the expectation of g(Xk) is given by the formula

E [g (Xk)] = g(µ) + O

(

1√
k

)

. (49)

Definition 7 (empirical distribution function). Suppose that N > 0 is a positive integer,
and X1, . . . , XN are i.i.d. real continuous random variables with common cdf F : R → [0, 1].
For all real t, we define the random variable F̂N (t) by the formula

F̂N (t) =
1

N
· |{Xi : Xi ≤ t, i = 1, . . . , N}| . (50)

In other words, F̂N (t) is the proportion of those Xi’s, whose values are less than or equal
to t. The random function F̂N : R → [0, 1] is called the empirical distribution function.

10

The following theorem describes some elementary asymptotical properties of the empir-
ical distribution function.

Theorem 4. Suppose that F̂N is defined via (50). Then, for all real t,

F̂N (t) ∼ 1

N
· Bin (N, F (t)) . (51)

In other words, N · F̂N (t) has binomial distribution with parameters N and p = F (t), as in
(19), (20). In particular,

D

lim
N→∞

√
N ·

(

F̂N (t) − F (t)
)

= N (0, F (t) · (1 − F (t))) . (52)

In other words, F̂N (t), shifted by F (t) and rescaled by
√

N , converges in distribution to the
normal distribution with mean zero and variance F (t) · (1 − F (t)).

2.4 Pseudorandom orthogonal transformations

In this section, we describe a fast method (presented in [13], [14]) for the generation of
random orthogonal transformations and their application to arbitrary vectors.

Suppose that d, M1, M2 > 0 are positive integers. We define a pseudorandom d-
dimensional orthogonal transformation Θ as a composition of M1 +M2 +1 linear operators

Θ =

M1
∏

j=1

Q
(d)
j P

(d)
j

 · F (d) ·

M1+M2
∏

j=M1+1

Q
(d)
j P

(d)
j

 . (53)

The linear operators P
(d)
j : R

d → R
d with j = 1, . . . , M1+M2 are defined in the following

manner. We generate permutations π1, . . . , πM1+M2 of the numbers {1, . . . , d}, uniformly

at random and independent of each other. Then for all x ∈ R
d, we define P

(d)
j x by the

formula
(

P
(d)
j x

)

(i) = x(πj(i)), i = 1, . . . , d. (54)

In other words, P
(d)
j permutes the coordinates of the vector x according to πj . P

(d)
j can be

represented by a d × d matrix Pj , defined by the formula

Pj(k, l) =

{

1 l = πj(k),

0 l 6= πj(k),
(55)

for k, l = 1, . . . , d. Obviously, the operators P
(d)
j are orthogonal.

The linear operators Q
(d)
j : R

d → R
d with j = 1, . . . , M1 + M2 are defined as follows.

We construct (d − 1) · (M1 + M2) independent pseudorandom numbers, θj(1), . . . , θj(d− 1)
with j = 1, . . . , M1 + M2, uniformly distributed in (0, 2π). Then we define the auxiliary
linear operator Qj,k : R

d → R
d for k = 1, . . . , d − 1 by the formula

(Qj,k(x)) (i) =

cos(θj(k)) · x(k) + sin(θj(k)) · x(k + 1), i = k,

− sin(θj(k)) · x(k) + cos(θj(k)) · x(k + 1), i = k + 1,

x(i) i /∈ {k, k + 1} ,

(56)

11

for all x ∈ R
d. In other words,

(Qj,k(x))

(

k
k + 1

)

=

(

cos(θj(k)) sin(θj(k))
− sin(θj(k)) cos(θj(k))

)

·
(

x(k)
x(k + 1)

)

, (57)

and the rest of the coordinates of Qj,k(x) coincide with those of x. We define Q
(d)
j by the

formula

Q
(d)
j = Qj,d−1 · Qj,d−2 · · · · · Qj,1. (58)

Obviously, the operators Q
(d)
j are orthogonal.

The linear operator F (d) : R
d → R

d is defined as follows. First suppose that d is even
and that d2 = d/2. We define the d2×d2 discrete Fourier transform matrix T by the formula

T (k, l) =
1√
d2

· exp

[

−2πi(k − 1)(l − 1)

d2

]

, (59)

where k, l = 1, . . . , d2 and i =
√
−1. The matrix T represents a unitary operator C

d2 → C
d2 .

We then define the one-to-one linear operator Z : R
d → C

d2 by the formula

Zx =

x(1) + i · x(2),
x(3) + i · x(4),

· · ·
x(2d2 − 1) + i · x(2d2)

(60)

for all x ∈ R
d. Eventually, we define F (d) by the formula

F (d) = Z−1 · T · Z (61)

for even d. If d is odd, we define F (d)
x for all x ∈ R

d by applying F (d−1) to the first d − 1
coordinates of x and leaving its last coordinate unchanged. Obviously, the operators T, Z,
defined by (59), (60), respectively, preserve the norm of any vector x ∈ R

d. Therefore, F (d)

is a real orthogonal transformation R
d → R

d.
The cost of the generation of a random permutation (see e.g. [12]) is O(d) operations.

The cost of the application of each P
(d)
j to a vector x ∈ R

d is obviously d operations due to
(54).

The cost of generation of d − 1 uniform random variables is O(d) operations. Also, the

cost of application of each Q
(d)
j to a vector x ∈ R

d is O(d) operations due to (56), (58).
Finally, the cost of the fast discrete Fourier transform is O(d · log d) operations, and the

cost of the application of F (d) to a vector x ∈ R
d is O(d · log d) operations due to (59), (60)

and (61).
Thus the cost of the generation of Θ defined via (53) is

Cost(Θ) = O (d · (M1 + M2 + log d)) . (62)

Moreover, the cost of application of Θ to a vector x ∈ R
d is also given by the formula (62).

Remark 1. The use of the Hadamard matrix (without 2× 2 rotations) appears in a related
problem studied by Ailon and Liberty [4].

12

3 Analytical Apparatus

The purpose of this section is to provide the analytical apparatus to be used in the rest of
the paper.

The following theorem generalizes Theorem 2 in Section 2.3. Its proof is provided here
for the sake of completeness.

Theorem 5. Suppose that N > 0 is a positive integer, and that X1, . . . , XN are i.i.d.
real continuous random variables with cdf F : R → (0, 1). Then, for any i = 1, . . . , N ,
the expectation of the order statistic X(i) (see Definition 3 in Section 2.3) is given by the
formula

E
[

X(i)

]

=

∫ 1

0
F−1(t) · fB(i,N+1−i)(t) dt, (63)

where fB(i,N+1−i) is the pdf of the beta distribution, defined via (28).

Proof. For the purpose of proving (63), we introduce N random variables U1, . . . , UN , de-
fined by the formula

Ui = F (Xi) , (64)

for i = 1, . . . , N . Obviously, Ui are i.i.d. uniform random variables in (0, 1). Since the
function F in (64) is monotonically increasing, it preserves order. In other words, the order
statistic U(i) satisfies the formula

U(i) = F
(

Y(i)

)

, (65)

for all i = 1, . . . , N . Due to Theorem 2 in Section 2.3,

U(i) ∼ B(i, N + 1 − i), (66)

for all i = 1, . . . , N , where B(i, N + 1− i) is the beta distribution, whose pdf is defined via
(28). Thus the identity (63) follows from the combination of (28), (64), (65) and (66). ¥

Theorem 6. Suppose that c > 1 is a positive real number, and that the function F : R →
(0, 1) is the cdf of a real continuous random variable. Suppose further, that the inverse
function F−1 : (0, 1) → R is continuously differentiable, and that

(

F−1
)′

(

1

c

)

6= 0. (67)

For every positive integer k > 0 such that N = c · k − 1 is an integer, we consider the
sequence of i.i.d. random variables X1, . . . , XN with cdf F , and define by X(k) the kth order
statistic of this sequence, as in Definition 3 in Section 2.3. Then,

E
[

X(k)

]

= F−1

(

1

c

)

+ O

(

1√
k

)

, k → ∞. (68)

In other words, up to an error of order O(k−1/2), the expectation of X(k) is given by
F−1 (k/(N + 1)).

13

Proof. Consider the random variables

Yk = B(k, N + 1 − k) = B(k, (c − 1) · k), (69)

where B(k, N + 1 − k) is the beta distribution, whose pdf is defined via (28). Due to (29),

E [Yk] =
k

N + 1
=

1

c
,

Var [Yk] =
k

(N + 1)2
· N + 1 − k

N + 2
=

c − 1

c2
· 1

ck + 1
. (70)

Therefore,

D

lim
k→∞

√
k ·

(

Yk − 1

c

)

= N

(

0,
c − 1

c3

)

, (71)

similar to (47). Thus the identity (68) follows from the combination of (71), Theorem 3 in
Section 2.3 and (64), (65), (66) in the proof of Theorem 5. ¥

Theorem 7. Suppose that a > 0 is a positive real number, and that X ∼ N(0, 1). We
define the random variable D−

a by the formula

D−
a = |(− |X|) − a|2 = ||X| + a|2 . (72)

In other words, D−
a is the square of the distance from a to the standard normal variable

conditioned on (−∞, 0) (see Definition 4 in Section 2.3). Then the pdf of D−
a is given by

the formula

fD−

a
(t) =

1√
2πt

· χ(a2,∞)(t) · e−
(a−

√

t)2

2 . (73)

Moreover, the Fourier transform h−
a : R → C of fD−

a
is given by the formula

h−
a (x) =

∫ ∞

−∞
fD−

a
(t) · eixt dt

= exp

[

ia2x

1 − 2ix

]

· erfc
[

− iax
√

2√
1 − 2ix

]

· 1√
1 − 2ix

, (74)

where the principal branch of the complex square root is taken.

Proof. Suppose that t > 0 is a real positive number. Clearly, D−
a > a2 with probability

one, so we may further assume that t > a2 and evaluate the cdf of D−
a at t by computing

the probability of D−
a being smaller than t to obtain

FD−

a
(t) =

∫ t

a2

fD−

a
(s) ds

= P

{

|− |X| − a|2 < t
}

= P

{

||X| + a| <
√

t
}

= P

{

−
√

t − a < |X| <
√

t − a
}

= F|X|(
√

t − a), (75)

14

where F|X| is the cdf of |X|. We recall that the pdf of |X| is given by (40) in Section 2.3
and differentiate (75) with respect to t to obtain (73). To demonstrate (74), we define w
by the formula

w2 =
1 − 2ix

2
(76)

and perform the change of variables s2 = t to compute

∫ ∞

a2

eixt

√
2πt

· e−(a−
√

t)2/2 dt =

√

2

π

∫ ∞

a
eixs2 · e−(a−s)2/2 ds =

exp

[

−a2

2
+

a2

4w2

]

·
√

2

π

∫ ∞

a
e−(sw−a/2w)2 ds =

exp

[

a2

2

(

1

1 − 2ix
− 1

)]

·
√

2

π

∫ ∞

aw−a/2w
e−z2 dz

w
=

exp

[

ia2x

1 − 2ix

]

·
√

2√
1 − 2ix

·
√

2

π

∫ ∞

a(2w2−1)/2w
e−z2

dz =

exp

[

ia2x

1 − 2ix

]

· 1√
1 − 2ix

· erfc
[

− iax
√

2√
1 − 2ix

]

, (77)

which establishes (74). ¥

Theorem 8. Suppose that a > 0 is a positive real number, and that X ∼ N(0, 1). We
define the random variable D+

a by the formula

D+
a = ||X| − a|2 . (78)

In other words, D+
a is the square of the distance from a to the standard normal variable

conditioned on (0,∞) (see Definition 4 in Section 2.3). Then the pdf of D+
a is given by the

formula

fD+
a
(t) =

1√
2πt

(

e−
(a+

√

t)2

2 + χ(0,a2)(t) · e−
(a−

√

t)2

2

)

. (79)

Moreover, the Fourier transform h+
a : R → C of fD+

a
is given by the formula

h+
a (x) =

∫ ∞

−∞
fD+

a
(t) · eixt dt

= exp

[

ia2x

1 − 2ix

]

· 2√
1 − 2ix

− h−
a (x), (80)

where h−
a (x) is defined by (74), and the principal branch of the complex square root is taken.

15

Proof. Suppose that t > 0 is a real positive number. We evaluate the cdf of D+
a at t by

computing the probability of D+
a being smaller than t to obtain

FD+
a
(t) =

∫ t

0
fD+

a
(s) ds

= P

{

||X| − a|2 < t
}

= P

{

a −
√

t < |X| < a +
√

t
}

=

{

F|X|(a +
√

t) − F|X|(a −
√

t) if
√

t ≤ a,

F|X|(a +
√

t) if
√

t > a,
(81)

where F|X| is the cdf of |X|. We recall that the pdf of |X| is given by (40) and differentiate
(81) with respect to t to obtain (79). Next, due to (72) and (78),

|X − a|2 =

{

D−
a with probability 1/2,

D+
a with probability 1/2.

(82)

Therefore, the sum of fD+
a
(t) and fD−

a
(t) is twice the pdf of χ2(1, a2), and the identity (80)

readily follows from (27) and (74). ¥

Remark 2. Suppose that a > 0 is a real positive number, and that the functions h−
a , h+

a :
R → C are defined by (74), (80), respectively. Combining (74) with (80) and carrying out
straightforward manipulations, we observe that

lim
x→∞

h−
a (x) ·

√
x = 0 (83)

and that

lim
x→∞

h+
a (x) ·

√
x = (1 + i) · e−a2/2. (84)

The remainder of this section is devoted to generalizing Theorems 7, 8 to the multidi-
mensional case.

Definition 8 (the random variable Dσ
a). Suppose that d ≥ L ≥ 3 are positive integers

and that a ∈ R
d is an d-dimensional vector all of whose coordinates are positive. Suppose

also that σ is a word of symbols +,− of length L (see (3) in Section 2.1), and that Qd
σ is

a subset of R
d defined by (6). We define the random variable Dσ

a to be the square of the
distance from a to the standard normal d-dimensional random vector conditioned on Qd

σ

(see Definition 4 in Section 2.3). In other words,

Dσ
a = ‖xσ

d − a‖2 =
d

∑

j=1

(

xσ
d (j) − a(j)

)2
, (85)

where x
σ
d ∼ N(0d, Id) | Qd

σ.

The following theorem provides the pdf of Dσ
a .

16

Theorem 9. Suppose that Dσ
a is a random variable as in Definition 8. We define the

function hσ
a : R → C by the formula

hσ
a (x) =

L
∏

j=1

h
σj

a(j)(x)

 · exp

ix

1 − 2ix
·

d
∑

j=L+1

a(j)2

 ·
(

1√
1 − 2ix

)d−L

, (86)

where h−
a and h+

a are given respectively by (74), (80). Then the pdf fσ
a of Dσ

a is given by
the formula

fσ
a (t) =

1

2π

∫ ∞

−∞
e−ixt · hσ

a (x) dx. (87)

Proof. We define the independent random variables D1, . . . , Dd by the formula

Dj =

{

D
σj

a(j) 1 ≤ j ≤ L,

|N(0, 1) − a(j)|2 L < j ≤ d,
(88)

where D−
a , D+

a are defined respectively by (72), (78). Then due to (85)

Dσ
a = D1 + · · · + Dd. (89)

We denote the pdf of Dj for j = 1, . . . , d by fDj
. Also, we denote by hj : R → C the Fourier

transform of fDj
(see (15) in Section 2.2). Due to independence of D1, . . . , Dd in (89), the

pdf fσ
a of Dσ

a is given by the convolution of fD1 through fDd
, i.e. for all real t,

fσ
a (t) = (fD1 ∗ · · · ∗ fDd

) (t). (90)

Therefore, the Fourier transform of fσ
a is given by the product of h1 through hd, i.e. for all

real x,

∫ ∞

−∞
fσ
a (t) · eixt dt =

d
∏

j=1

hj(x). (91)

For j = 1, . . . , L and all real x,

hj(x) =

∫ ∞

−∞
fDj

(t) · eixt dt = h
σj

a(j)(x), (92)

due to Theorems 7, 8. For j = L + 1, . . . , d and all real x,

hj(x) =

∫ ∞

−∞
fDj

(t) · eixt dt = exp

[

ixa(j)2

1 − 2ix

]

· 1√
1 − 2ix

, (93)

due to (27). We combine (87), (91), (92) and (93) to conclude that the Fourier transform
of fσ

a is given by the function hσ
a : R → C, defined via (87). Next, we observe that since

d ≥ 3, the function hσ
a (x) decays at infinity at least as fast as x−3/2, due to (83), (84)

in Remark 2 and identity (93). Since hσ
a is also obviously continuous, it follows that hσ

a

belongs to L1(R), and the formula (87) is implied by the Fourier inversion formula (16) in
Section 2.2. ¥

17

Corollary 1. The cdf Fσ
a of the random variable Dσ

a (see Definition 8) is given for all
positive x > 0 by the formula

Fσ
a (x) =

∫ x

0
fσ
a (t) dt, (94)

where fσ
a is the pdf of Dσ

a , defined via (87).

4 The Randomized Approximate Nearest Neighbors algo-
rithm (RANN)

In this section, we describe the Nearest Neighbor Problem and present a fast randomized
algorithm for its solution.

4.1 The Nearest Neighbor Problem

Suppose that d and k < N are positive integers and suppose that

B = {x1, x2, . . . ,xN} ⊆ R
d (95)

is a collection of N points in R
d. We are interested in finding the k nearest neighbors of

each point xi.
For each xi, one can compute in a straightforward manner the distances to the rest of the

points and thus find the nearest neighbors. However, the total cost of the evaluation of the
distances alone is O(d ·N2), which makes this naive approach prohibitively expensive when
N is large. We propose a faster approximate algorithm for the solution of this problem.

4.2 Informal description of the algorithm

4.2.1 Initial selection

The key idea of our algorithm is the following simple (and well known) observation. Suppose
that for each xi we have found a small subset Vi of B such that a point inside Vi is more likely
to be among the k nearest neighbors of xi than a point outside Vi. Then it is reasonable to
look for the nearest neighbors of each xi only inside Vi and not among all the points. The
nearest neighbors of xi in Vi, which can be found by direct scanning, are referred to as its
”suspected approximate nearest neighbors”, or ”suspects”, as opposed to the true nearest
neighbors

{

xt(i,j)

}

.
Of course, many of the k true nearest neighbors of xi might not be among its suspects.

However, one can re-select Vi to obtain another list of k suspects of xi. The initial guess
is improved by taking the “best” k points out of the two lists. This scheme is iterated to
successively improve the list of suspects of each xi.

The performance of the resulting iterative randomized algorithm admits the following
crude analysis. Suppose that the size of Vi is α · N , with α ≪ 1. Suppose also that the
number of the true nearest neighbors of xi inside Vi is roughly β · k, with α < β < 1. If
the choice of Vi is fairly random, then order O(1/β) iterations of the algorithm are required
to find most of the true nearest neighbors of each xi. Temporarily neglecting the cost of

18

the construction of Vi, this results in O
(

(α/β) · d · N2
)

operations instead of O
(

d · N2
)

operations for the naive algorithm. If α ≪ β, the improvement can be substantial.
Our construction of Vi’s is based on geometric considerations. First, we shift all of the

points to place their center of mass at the origin and apply a random orthogonal linear
transformation on the resulting collection. (Later on, we will divide our sets according to
the median - see Section 6.1. Here, for simplicity of presentation, as well as applications in
the Gaussian case, we divide using the center of mass.) Then, we divide all the points in B
into two disjoint sets

B− = {x ∈ B : x(1) < 0} ,

B+ = {x ∈ B : x(1) ≥ 0} . (96)

In other words, B− consists of those points whose first coordinate is negative, and B+

consists of those points whose first coordinate is non-negative. Next, we split B+ into two
disjoint sets B+− and B++ by the same principle, but using the second coordinate, i.e.

B+− = {x ∈ B+ : x(2) < 0} ,

B++ = {x ∈ B+ : x(2) ≥ 0} . (97)

We construct B−− and B−+ in a similar fashion via splitting B− by the second coordinate
of its points, i.e.

B−− = {x ∈ B− : x(2) < 0} ,

B−+ = {x ∈ B− : x(2) ≥ 0} . (98)

Then we repeat the subdivision by splitting each of the four boxes into two by using the
third coordinate, and so on. We proceed until we end up with a collection of 2L boxes
{Bσ}, containing k points on average. In other words, L is a positive integer defined via
the inequality

k · 2L ≤ N < k · 2L+1. (99)

The box index σ is a word of symbols +,− of length L, as in (3) in Section 2.1. We easily
observe, that Bσ consists of those points x in B, the signs of whose first L coordinates
coincide with the corresponding symbols of the word σ. In other words,

Bσ = {x ∈ B : sgn(x(l)) = σl, l = 1, . . . , L} = B ∩ Qd
σ, (100)

due to (6) in Section 2.1. Obviously, the sets
{

Bµ

}

constitute a complete binary tree of
length L, whose nodes are indexed by words µ of symbols +,− of length up to L. The set
B is at the root of this tree, the sets B− and B+ are at the second level, and so on. The
2L boxes Bσ, defined via (100), are at the Lth (and last) level of the tree.

The construction is illustrated in Figure 1(a). Here, the parameters are k = 5 and
d = L = 2, and the number of points is N = 5 · 22 = 20. Thus we have 4 boxes, each
containing 5 points on average. More specifically, the boxes B++, B+−, B−− and B−+

contain 8, 2, 7 and 3 points, respectively.

19

The notion of degree of contact (4) extends to the collection {Bσ} of boxes. Suppose
that xi is in Bσ. Obviously, the higher degree of contact of two boxes Bσ and Bµ is, the
less likely a point of Bµ will be among the k nearest neighbors of xi. Motivated by this
observation, we define the set Vi as

Vi =
{

x ∈ Bµ : Con(σ, µ) ≤ 1
}

=
L
⋃

j=0

Bσj , (101)

due to Definition 1 in Section 2.1. In other words, Vi is the union of the box Bσ containing
xi and L boxes whose degree of contact with Bσ is one. Thus for each i = 1, . . . , N , the set
Vi contains about k · (L + 1) points on average. For example, in Figure 1(a) for every point
xi in B++ (upper right box), the set Vi is the union of B++, B−+ and B+−, containing 12
points. On the other hand, for every point xi in B+− (lower right box), the set Vi is the
union of B+−, B++ and B−−, containing 18 points.

The choice of suspects is illustrated in Figure 1(b). The division into boxes is the same
as in Figure 1(a). The point xi is the uppermost point in B−−. Its 5 true nearest neighbors
are marked with squares. The 5 suspects of xi are connected to it by lines. One of the true
nearest neighbors is not among them, since it belongs to B++, and the degree of contact
between B−− and B++ is two.

In Section 6.1, an alternative (though very similar) construction of the boxes {Bσ} is
proposed. This construction is also mentioned in Section 1.

4.2.2 “Supercharging”

In Section 4.2.1, we have described an iterative scheme for the selection of suspects (sus-
pected approximate nearest neighbors) for each of the points xi in B. Suppose now that
after T iterations of this scheme, the list xs(i,1), . . . ,xs(1,k) of k suspects of each point xi

has been generated. This list can be improved by a procedure we call supercharging.
The idea of supercharging is based on the following observation. A true nearest neigh-

bor of xi, missed by the scheme described above, might be among the suspects of one of
xs(i,1), . . . ,xs(1,k). This leads to the following obvious procedure.

For each xi, we denote by Ai the list of suspects of all xs(i,1), . . . ,xs(i,k). Ai contains k2

points, with possible repetitions. We compute the square of the distances from xi to each
point in Ai and find the k nearest neighbors xt(i,1,Ai), . . . ,xt(i,k,Ai) of xi in Ai. Then we

declare the (updated) suspects of xi to be the best k points out of the two lists
{

xs(i,j)

}k

j=1

and
{

xt(i,j,Ai)

}k

j=1
.

In other words, supercharging is a depth one search on the graph, whose vertices are
the points {xi} and whose N × k adjacency matrix is the suspects’ indices {s(i, j)}, with
i = 1, . . . , N and j = 1, . . . , k.

4.2.3 Overview

We conclude this section with a list of the principal steps of the algorithm. Given the
collection {xi}N

i=1 of points in R
d, we perform the following operations.

1. Subtract from each xi the center of mass of the collection.

20

−2 −1 0 1 2
−2

−1

0

1

2

B++

B+−

B−+

B−−

(a) Division into four boxes in two dimension.

−2 −1 0 1 2
−2

−1

0

1

2

B++

B+−

B−+

B−−

(b) Suspects vs. true nearest neighbors.

Figure 1: Illustration of the algorithm in two dimension.

21

2. Choose a random orthogonal linear transformation Θ and set xi = Θ(xi) for all
i = 1, . . . , N .

3. Construct 2L boxes {Bσ} as described in Section 4.2.1 (see (100)).

4. For each xi define the set Vi via (101).

5. Update the suspects xs(i,1), . . . ,xs(i,k) of xi by using its true nearest neighbors in Vi.

6. Steps 2-5 are repeated T times.

7. For each xi, perform supercharging.

4.2.4 Query for a new point

Suppose that we are given a new point y ∈ R
d, and we need to find its k nearest neighbors

in B = {x1, . . . ,xN}. In this section, we describe a rapid procedure to find k approximate
nearest neighbors of y. This procedure uses the following information, available on the jth
iteration of the algorithm, for j = 1, . . . , T :

1. The orthogonal linear transformation Θ(j), generated on the jth iteration of the algo-
rithm (Step 2 in Section 4.2.3).

2. The collection of boxes
{

B
(j)
σ

}

, generated on the jth iteration of the algorithm (Step

3 in Section 4.2.3).

3. For each point xi, the list of its k nearest neighbors in the union V
(j)
i of ”close” boxes

(Step 4 in Section 4.2.3).

To find k approximate nearest neighbors of the new point y among the points of B, we
perform the following operations. First, we apply Θ(1) on y, where Θ(1) is the orthogonal
linear transformation of the first iteration of the algorithm. The resulting vector is denoted
by y

(1), in other words,

y
(1) = Θ(1) (y) . (102)

Next, in the collection of boxes
{

B
(1)
σ

}

, generated on the first iteration of the algorithm,

we find the box B
(1)
σ(1) that has degree of contact zero with y

(1). In other words, for each

l = 1, . . . , L, the lth symbol of σ(1) is the sign of lth coordinate of y
(1), i.e.

σ(1) =
(

sgn
(

y(1)(1)
)

, . . . , sgn
(

y(1)(L)
))

. (103)

Note, that if y had belonged to B in the first place, then on the first iteration of the

algorithm y
(1) would have belonged to B

(1)
σ(1).

The box B
(1)
σ(1) has roughly k points. Each point xi in B

(1)
σ(1) has a list of its k nearest

neighbors in the set V
(1)
i , where, similar to (101), V

(1)
i is the union of the boxes having

degree of contact zero or one with B
(1)
σ(1). We denote by A(1) the union of the nearest

22

neighbors of each xi ∈ B
(1)
σ(1) among V

(1)
i . Note that the set A(1) has roughly k2 points,

with possible repetitions.
We construct the set A(2) in a similar manner, by using the data of the second iteration

of the algorithm. We apply the orthogonal transformation Θ(2) of the second iteration on
y

(1) to obtain y
(2), i.e.

y
(2) = Θ(2)

(

y
(1)

)

= Θ(2)
(

Θ(1) (y)
)

, (104)

due to (102). In the boxes
{

B
(2)
σ

}

of the second iteration, we find the box B
(2)
σ(2), having

degree of contact zero with y
(2). Each xi in B

(2)
σ(2) has a list of k nearest neighbors of xi in

V
(2)
i , and we denote their union by A(2). Similar to A(1), the set A(2) contains roughly k2

points.
We repeat this procedure to constructs the sets A(j) for j = 3, 4, . . . , T , where T is the

number of the iterations of the algorithm. Each A(j) contains roughly k2 points.
Finally, we define the set A to be the union of all the sets A(j), in other words,

A =
T
⋃

j=1

A(j). (105)

The set A contains roughly T ·k2 points. The k nearest neighbors of y inside A are declared
to be the approximate nearest neighbors of y inside B. We note that to construct A we
need to store the corresponding data on each iteration of the algorithm.

4.3 Detailed description of the algorithm

Input

A collection B = {x1, . . . ,xN} of points in R
d, the number 0 < k < N of required

nearest neighbors, the number T > 0 of iterations.

Output

For each point xi, return the list
{

xs(i,1), . . .xs(i,k)

}

of its k suspects and the square
of the distances to them, di,j = ‖xi − xs(i,j)‖2.

4.3.1 Initialization

Step 1.

Shift all the points by the center of mass of the collection.

Comment. Now the points are centered about the origin.

23

4.3.2 A single iteration of the algorithm

The Steps 2, 3, 4 below are repeated T times.

Step 2.

Choose a pseudorandom orthogonal linear transformation Θ and apply it to every
point xi, with i = 1, . . . , N , as described in Section 2.4. Note that the distances
between the points are preserved.

Step 3.

Choose the number of subdivisions to be L = ⌊log2 (N/k)⌋.

do l = 1, . . . , L

do for all 2l−1 words µ = µ1 . . . µl−1 of symbols +,−
Split the box Bµ into two boxes Bµ− and Bµ+, such that the lth coordinate
of any point in Bµ− is negative and the lth coordinate of any point in Bµ+

is non-negative. In other words,

Bµ− =
{

x ∈ Bµ : x(l) < 0
}

,

Bµ+ =
{

x ∈ Bµ : x(l) ≥ 0
}

. (106)

Comment. See (96), (97), (98), (100) in Section 4.2.1).

Step 4.

do for all 2L words σ = σ1 . . . σL of symbols +,−

A. Set Vσ to be the union of Bσ and the L boxes Bµ having degree of contact one
with Bσ, as defined by (4). In other words,

Vσ =
{

x ∈ Bµ : Con (σ, µ) ≤ 1
}

=
L
⋃

j=0

Bσj , (107)

due to Definition 1. Vσ contains k · (L + 1) points on average.

B. For each point xi in Bσ, find the list xt(i,1,Vσ), . . . ,xt(i,k,Vσ) of its k nearest
neighbors in Vσ.

Comment. A heap of size k is used to find
{

xt(i,j,Vσ)

}k

j=1
.

C. Update the suspects xs(i,1), . . . ,xs(i,k) of each xi in Bσ by taking the best k

points out of the two lists
{

xt(i,j,Vσ)

}k

j=1
and

{

xs(i,j)

}k

j=1
.

Comment. The two lists are merged and sorted according to the distances to
xi. Then the redundant indices are removed and the first k points are declared
to be the updated suspects of xi.

24

4.3.3 Supercharging

Step 5 below is carried out once after T iterations of Steps 2, 3, 4.

Step 5.

do for all i = 1, . . . , N

A. Set Ai to be the list of suspects of xs(i,1), . . . ,xs(i,k), i.e.

Ai =
{

xs(s(i,j),l)

}k

j,l=1
. (108)

Ai contains k2 points with possible repetitions.

B. Compute the distances from xi to each of the k2 points in Ai.

C. Find the k nearest neighbors xt(i,1,Ai), . . . ,xt(i,k,Ai) of xi in Ai.

Comment. A heap of size k is used and the redundancies (i.e. second appear-
ances of the same point) are removed.

D. Update the suspects xs(i,1), . . . ,xs(i,k) of xi by taking the best k points out of

the two lists
{

xt(i,j,Ai)

}k

j=1
and

{

xs(i,j)

}k

j=1
.

4.3.4 Query for a new point

Given a new point y ∈ R
d, we find its k approximate nearest neighbors in the set B =

{x1, . . . ,xN}. We assume that the algorithm has already found k suspects for each xi, and,
moreover, the relevant data for each of T iterations have been stored.

1. Define y
(0) = y.

2. do for all j = 1, . . . , T

A. Define the vector y
(j) by the formula

y
(j) = Θ(j)

(

y(j−1)
)

, (109)

where Θ(j) is the orthogonal transformation of Step 2 of the jth iteration (see
also (102), (104)).

B. Define the word σ(j) of symbols +,− of length L by the formula

σ(j) =
(

sgn
(

y(j)(1)
)

, . . . , sgn
(

y(j)(L)
))

, (110)

similar to (103). Out of the collection
{

B
(j)
σ

}

generated on Step 3 of the jth

iteration, the box B
(j)
σ(j) has degree of contact zero with y

(j).

Comment. Since the boxes
{

B
(j)
σ

}

are stored on the leaves of a binary tree of

length L (see Section 4.2.1), the box B
(j)
σ(j) can be found by the binary search

on this tree. This search method also works for the alternative construction of
boxes, described in Section 6.1.

25

C. For each point xi in B
(j)
σ(j), define A

(j)
i to be the list of k the nearest neighbors

of xi in V
(j)
σ(j), where

V
(j)
σ(j) =

{

x ∈ B
(j)
µ : Con (σ(j),µ) ≤ 1

}

, (111)

similar to (107). In other words,

A
(j)
i =

{

xt(i,1,V), . . . ,xt(i,k,V)

}

, (112)

where V = V
(j)
σ(j). Then, define A(j) to be the union of all A

(j)
i , for xi ∈ B

(j)
σ(j).

In other words,

A(j) =
{

x ∈ A
(j)
i : xi ∈ B

(j)
σ(j)

}

. (113)

The set A(j) contains roughly k2 points (see also Section 4.2.4).

3. Define the set A to be the union of all A(j). In other words, A is defined via (105).
The set A contains roughly T · k2 points.

4. Compute the distances from y to each of the points xi in A.

5. Find the k nearest neighbors of y in A (similar to C in Step 5, see Section 4.3.3).
These are the approximate nearest neighbors of y in B.

4.4 Cost analysis

In this section, we analyze the cost of the algorithm in terms of number of operations.
Also, we analyze the memory requirements of the algorithm. We recall that x1, . . . ,xN is
a collection of N points in R

d and N ≈ k · 2L. We estimate the number of operations for
each step described in the preceding Section 4.3.

The cost of Step 1.

• It takes 2 · d · N operations to centralize the points.

The cost of Step 2.

• In our implementation of the pseudorandom orthogonal transformation algorithm (see
Section 2.4), the parameters in the formula (53) were chosen to be M1 = 1, M2 = 6.
Therefore it takes O(d · (log d + 7)) = O(d · (log d)) operations to generate a random
transformation Θ, and also O(d · (log d)) operations to apply it to each point xi (see
(62) in Section 2.4). Thus the total cost of this step is O(N · d · (log d)) operations.

26

The cost of Step 3.

• The cost of splitting a single box Bµ into two is order O(
∣

∣Bµ

∣

∣) operations.

• There are 2l−1 boxes Bµ for each l = 1, . . . , L, containing N points altogether, which
results in O(N) operations for each l.

• Hence the total cost is O(L · N).

The cost of Step 4.

• The cost of finding the k nearest neighbors of each xi inside Vσ of size about k ·(L+1)
is O(L · k · (log k)).

• The cost of updating the suspects of each xi is O(k · (log k)).

• Hence the total cost of this step is O(N · L · k · (log k)).

The cost of Step 5.

• The cost of computing the distances to k2 points for each xi is O(d · k2).

• The cost of finding the best k points out of this list is O(k2 · (log k)).

• Hence the total cost of supercharging is O
(

N · k2 · (d + log k)
)

.

The total cost of the algorithm

We conclude that the total cost of the algorithm is

O (T · N · (d · (log d) + k · (log k) · (log N))) + O(N · k2 · (d + log k)), (114)

where T is the number of iterations. We observe that for fixed dimension d and
number of required nearest neighbors k, the cost is O(T · N · log N), as opposed to
O(N2) of the naive approach. Also, the cost of supercharging is quadratic in the
number of nearest neighbors for fixed dimension d and number of points N , which
makes supercharging expensive relative to a single iteration of the principal part of
the algorithm even for moderate k.

The cost of query for a new point

• The cost of computing y(j) for each j = 1, . . . , T is order O(d · (log d)) operations (see
the cost of Step 2).

• The cost of finding σ(j), defined via (110), is O(L) = O(log2(N/k)) operations (since
this is the binary search in a binary tree of length L).

• The cost of the construction of A(j), defined via (113), is order k2 operations.

27

• Thus the total cost of the construction of A, defined via (105), is order

O
(

T ·
(

d · (log d) + log(N/k) + k2
))

. (115)

• The cost of the evaluation of the distances from y to each point xi in A is order
O(T · d · k2) operations, since A contains roughly T · k2 points in R

d.

• The cost of finding k nearest neighbors of y among the points of A is order O(T · k2 ·
(log k)) operations.

• Thus the total cost of query for a new point y is order

O
(

T ·
(

d · (log d) + log(N/k) + k2 · (d + log k)
))

. (116)

We observe that this cost grows linearly in the number of iterations T , grows as
d · (log d) in the dimension d, grows as log N in the number of points N , and grows
as k2 · (log k) in the number of requested nearest neighbors k.

Memory requirements

We must distinguish between two cases. In the first case, given N points {xi} in R
d, we

are interested in finding k nearest neighbors for each xi only. In other words, no query for
a new point will ever be requested. Then, the memory requirements of the algorithm are
order O(N · (d + k)), since:

• the memory required to store N points in R
d is of the order O(N · d);

• the memory required to store the indices of k nearest neighbors of each of N points
is of the order O(N · k);

• the memory required to store 2L ≈ N/k boxes {Bσ} and the corresponding binary
tree, constructed on Step 3 of Section 4.3, is of the order O(N).

In other words, in this case the memory requirements are minimal, in the sense that most
of the memory is spent on the storage of input and output of the algorithm only.

In the second case, we know in advance that queries for new points will be requested.
Differently put, the environment is dynamic, i.e. not all data are known at the time of
the first invocation of the algorithm. To perform the query for a new point y ∈ R

d (see
Section 4.2.4, 4.3.4), we need to store additional data on each iteration of the algorithm.
The memory requirements are then as follows:

• The memory required to store the orthogonal transformation on Step 2 in Section 4.3
is O (d).

• The memory required to store the boxes {Bσ} and the corresponding binary tree on
Step 3 in Section 4.3 is O(N).

• The memory required to store k neighbors of each point xi is O(N · k) (see (112)).

• The memory required to store A(j), as defined by (113), is O(k2), for each j = 1, . . . , T .

28

Thus, when queries for new points are allowed, the total memory requirements are of the
order

O (N · (d + k) + T · (d + N · k)) . (117)

4.5 Performance analysis

In this section, we analyze the performance of the Randomized Approximate Nearest Neigh-
bor algorithm, described in Sections 4.2, 4.3.

We recall that for each point xi out of a collection of N points x1, . . . ,xN in R
d,

the algorithm approximates the k true nearest neighbors
{

xt(i,j)

}k

j=1
of xi by k suspects

{

xs(i,j)

}k

j=1
(see Sections 4.1, 4.2.3). In order to analyze the quality of this approximation,

we introduce a number of statistical quantities. First, we define the average square of the
distance from xi to its k true nearest neighbors by the formula

Dtrue
i =

1

k

k
∑

j=1

‖xi − xt(i,j)‖2. (118)

Next, we define the average square of the distance from xi to its k suspects by the formula

Dsusp
i =

1

k

k
∑

j=1

‖xi − xs(i,j)‖2. (119)

Finally, we define the proportion of the true nearest neighbors of xi among its suspects by
the formula

propi =
1

k

∣

∣

∣

{

xt(i,j)

}k

j=1
∩

{

xs(i,j)

}k

j=1

∣

∣

∣
. (120)

To be able to analyze the quantities (118), (119), (120), we need to make some as-
sumption on the distribution of the points x1, . . . ,xN . The most natural candidate is the
standard normal distribution. To be more specific, we consider the collection of N inde-
pendent standard normal d-dimensional random vectors x1, . . . ,xN (see Section 2.3), where
the number of points is given by the formula

N = k · 2L (121)

for some positive integer L > 0, in agreement with Section 4.3.2.
We analyze a single iteration of the algorithm, as described by Steps 3, 4 of Section 4.3.2.

Since the standard normal distribution is radially symmetric, the orthogonal transformation
in Step 2 of Section 4.3.2 does not affect the distribution of the points. The effects of
supercharging (Sections 4.2.2, 4.3.3) are not included in the analysis below.

4.5.1 Average distance to true nearest neighbors

In this section, we study the expectation of Dtrue
i , defined via (118). Obviously, it does

not depend on i. Therefore, it suffices to compute E
[

Dtrue
i

]

for i = N only. The following
theorem provides an analytical formula for E

[

Dtrue
N

]

.

29

Theorem 10. Suppose that d, k, N > 0 are positive integers. Suppose further that Dtrue
N is

defined by (118). Then its expectation is given by the formula

E
[

Dtrue
N

]

=
1

k

∫ ∞

λ=0

(

k
∑

i=1

∫ 1

0
F−1

χ2(d,λ)
(t) · fB(i,N−i)(t) dt

)

· fχ2
d
(λ) dλ, (122)

where the functions fχ2
d
, fB(i,N−i) are defined respectively by (23), (28) in Section 2.3, and

F−1
χ2(d,λ)

is the inverse of the cdf of χ2(d, λ) (see (25) in Section 2.3).

Proof. We fix a vector a ∈ R
d and consider N − 1 i.i.d. standard normal d-dimensional

random vectors x1, . . . ,xN−1. For i = 1, . . . , N − 1, we define the random variables Y a
i by

the formula

Y a
i = ‖xi − a‖2. (123)

The random variables Y a
i are i.i.d., and

Y a
i ∼ χ2(d, λ), (124)

with λ = ‖a‖2, due to (25) in Section 2.3. Due to Definition 3 in Section 2.3, the order
statistics Y a

(1), . . . , Y
a
(k) are the squares of the distances to the k nearest neighbors of a among

x1, . . . ,xN−1. (Needless to say, the distribution of Y a
(i) differs from that of Y a

i .) Therefore,

the conditional expectation of Dtrue
N given that xN = a is provided by the formula

E
[

Dtrue
N | xN = a

]

=
1

k

k
∑

i=1

E

[

Y a
(i)

]

, (125)

due to (118). To evaluate the expectation of Dtrue
N , we integrate (125) with respect to the

pdf of xN to obtain

E
[

Dtrue
N

]

=

∫

Rd

E
[

Dtrue
N | xN = a

]

dP {xN = a}. (126)

To compute the integrand in (126), we need to evaluate each summand in (125). Due to
Theorem 5 in Section 3,

E

[

Y a
(i)

]

=

∫ 1

0
F−1

χ2(d,λ)
(t) · fB(i,N−i)(t) dt, (127)

for all i = 1, . . . , N − 1. We observe that the right-hand side of (127) depends on a only
through the square of its norm λ = ‖a‖2. We combine this observation with (23), (125),
(126), and (127) to establish (122). ¥

The following theorem provides an approximation to (122) by a one-dimensional integral.

30

Theorem 11. Suppose that d, k, N > 0 are positive integers, and that 2k < N . Suppose
further that Dtrue

N is defined by (118). We define Dtrue
appr by the formula

Dtrue
appr =

1

k

∫ ∞

λ=0

(

k
∑

i=1

F−1
χ2(d,λ)

(

i

N

)

)

· fχ2
d
(λ) dλ, (128)

where the function fχ2
d

is defined by (23) in Section 2.3, and F−1
χ2(d,λ)

is the inverse of the

cdf of χ2(d, λ) (see (25) in Section 2.3). Then

E
[

Dtrue
N

]

= Dtrue
appr + O (d) , d → ∞, (129)

and

E
[

Dtrue
N

]

= Dtrue
appr + O

(

1√
k

)

, k, N → ∞,
k

N
= const. (130)

In other words, the identity (129) holds, if we fix N, k and let d → ∞, and the identity
(130) holds, if we fix d, k/N and let N → ∞.

Proof. We consider the integral (127) and observe that its integrand contains the pdf
fB(i,N−i) of the beta distribution, with 1 ≤ i ≤ k. Due to (29) in Section 2.3,

µi = E [B(i, N − i)] =
i

N
,

σ2
i = Var [B(i, N − i)] =

i

N2
· N − i

N + 1
. (131)

We expand F−1
χ2(d,λ)

(t) in (127) into a Taylor series about µi, namely, for all 0 < t < 1,

F−1
χ2(d,λ)

(t) = F−1
χ2(d,λ)

(µi) + (t − µi) ·
dF−1

χ2(d,λ)

dt
(µi) + O

(

(t − µi)
2
)

. (132)

We substitute (132) into (127) and use (131) to obtain the formula

E

[

Y a
(i)

]

= F−1
χ2(d,λ)

(

i

N

)

+

∫ 1

0
O

(

(t − µi)
2
)

· fB(i,N−i)(t) dt. (133)

On the other hand, the combination of (26), (124), the assumption that 2k < N and
Theorem 1 in Section 2.3 implies that

E

[

Y a
(i)

]

≤ 2 · E
[

χ2(d, λ)
]

= 2 (d + λ) , (134)

for i = 1, . . . , k. Therefore, due to (24) in Section 2.3,
∫ ∞

λ=0
E

[

Y a
(i)

]

· fχ2
d
(λ) dλ = O(d). (135)

We combine (135) with (122), (125), (126) to conclude that

E
[

Dtrue
appr

]

= O(d). (136)

The identity (129) then follows from the combination of (133) and (136). The identity (130)
is a direct consequence of Theorem 6 in Section 3. ¥

31

Remark 3. Theorem 11 does not provide an explicit bound on the difference between
E

[

Dtrue
N

]

and Dtrue
appr, defined via (122), (128), respectively. This deficiency will be partially

remedied in Section 5.1, via numerical experiments.

4.5.2 Distances to points in a given quadrant

In this section, we study the distances from a fixed vector a ∈ R
d to standard normal

random vectors, conditioned on Qd
σ (see (6) in Section 2.1 and Definition 4 in Section 2.3).

The results of this section will be used to analyze the quantities Dsusp
i and propi, defined

by (119), (120), respectively.
Throughout this section, we use the following definition.

Definition 9. Suppose that d, N > 0 are positive integers, and that a, x1, . . . ,xN are
vectors in R

d. For j = 1, . . . , N , we define xt(a,j) to be the jth nearest neighbor of a among
x1, . . . ,xN . In other words,

‖xt(a,1) − a‖2 ≤ · · · ≤ ‖xt(a,N) − a‖2. (137)

Next, we prove a number of technical lemmas.

Lemma 1. Suppose that N > 0 and d ≥ L > 0 are positive integers, and that a ∈ R
d is

a vector, all of whose coordinates are positive. Suppose further that σ is a word of symbols
+,− of length L, and that x1, . . . ,xN are i.i.d. random vectors in R

d, such that for all
i = 1, . . . , N ,

xi ∼ N (0d, Id) | Qd
σ (138)

(see (6) in Section 2.1 and Definition 4 in Section 2.3). Then, for all j = 1, . . . , N , the
expectation of the square of the distance from a to xt(a,j) (see Definition 9 above) is given
by the formula

E
[

‖xt(a,j) − a‖2
]

=

∫ 1

0
(Fσ

a)−1(t) · fB(j,N+1−j)(t) dt, (139)

where (Fσ
a)−1 is the inverse of the function Fσ

a defined via (94), and fB(j,N+1−j) is defined
via (28).

Proof. For all i = 1, . . . , N , we define the random variable Di by the formula

Di = ‖xi − a‖2. (140)

In other words, Di is the square of the distance from xi to a. Then, D1, . . . , DN are i.i.d.,
and for all i = 1, . . . , N

Di ∼ Dσ
a , (141)

due to Definition 8 in Section 3. Next, due to Theorem 9 in Section 3, the cdf of any
Di is given by Fσ

a , defined via (94). Thus the identity (139) follows from Theorem 5 in
Section 3. ¥

32

Corollary 2. Under the hypothesis of Lemma 1, for j = 1, . . . , N/2,

E
[

‖xt(a,j) − a‖2
]

= (Fσ
a)−1

(

j

N + 1

)

+ O
(

d + ‖a‖2
)

, (142)

and for j = N/2, . . . , N ,

E
[

‖xt(a,j) − a‖2
]

= (Fσ
a)−1

(

j

N + 1

)

+ O
(

j ·
(

d + ‖a‖2
))

. (143)

In other words, both formulae (142) and (143) hold, if we fix k, L and let d → ∞.

Proof. Obviously, for all i = 1, . . . , N

E
[

‖xi − a‖2
]

= O
(

E
[

χ2
(

d, ‖a‖2
)])

= O
(

d + ‖a‖2
)

. (144)

Therefore, (142), (143) follow from the combination of Theorem 1 in Section 2.3 and (139)
in essentially the same way, as (134) was derived from (127) in the proof of Theorem 11 in
Section 4.5.1. ¥

The remainder of this section is devoted to generalizing Lemma 1 and Corollary 2 to
standard normal random vectors, conditioned on a union of several quadrants. First, we
introduce the following definition.

Definition 10. Suppose that d ≥ L > 0 are positive integers, and that σ is a word of
symbols +,− of length L. Suppose further, that a ∈ R

d is a vector, all of whose coordinates
are positive. We define the function Gσ

a : R → (0, 1) by the formula

Gσ
a (x) =

1

L + 1

L
∑

j=0

Fσj

a (x), (145)

where σ
0, . . . ,σL are as in Definition 1 in Section 2.1, and Fσj

a is defined via (94) in
Section 3. In other words, Gσ

a is the average of L + 1 functions F
µ
a , taken over those

words µ, whose degree of contact with σ is either zero or one. Obviously, Gσ
a retains all

the properties of the cdf of a continuous distribution.

The following lemma generalizes Lemma 1.

Lemma 2. Suppose that N > 0 and d ≥ L > 0 are positive integers, and that a ∈ R
d

is a vector, all of whose coordinates are positive. Suppose further that σ is a word of
symbols +,− of length L, and that x1, . . . ,xN are i.i.d. random vectors in R

d, and for all
i = 1, . . . , N ,

xi ∼ N (0d, Id) | Qd
σ0 ∪ · · · ∪ Qd

σL (146)

(see (5), (6) in Section 2.1 and Definition 4 in Section 2.3). Then, for all j = 1, . . . , N , the
expectation of the square of the distance from a to xt(a,j) (see Definition 9 in Section 4.5.2)
is given by the formula

E
[

‖xt(a,j) − a‖2
]

=

∫ 1

0
(Gσ

a)−1(t) · fB(j,N+1−j)(t) dt, (147)

where (Gσ
a)−1 is the inverse of the function Gσ

a defined via (145), and fB(j,N+1−j) is defined
via (28).

33

Proof. Since the standard normal distribution is radially symmetric, the probability of xi

being in Qd
σj for any i = 1, . . . , N and j = 0, . . . , L are identical, i.e.

P

{

xi ∈ Qd
σj

}

=
1

L + 1
. (148)

We combine (94) with (148) to conclude that the cdf of ‖xi − a‖2 is given by Gσ
a , defined

via (145). Thus the identity (147) follows from Theorem 5 in Section 3. ¥

Corollary 3. Under the hypothesis of Lemma 2, for j = 1, . . . , N/2,

E
[

‖xt(a,j) − a‖2
]

= (Gσ
a)−1

(

j

N + 1

)

+ O
(

d + ‖a‖2
)

, (149)

and for j = N/2, . . . , N ,

E
[

‖xt(a,j) − a‖2
]

= (Gσ
a)−1

(

j

N + 1

)

+ O
(

j ·
(

d + ‖a‖2
))

. (150)

In other words, both formulae (149) and (150) hold, if we fix k, L and let d → ∞.

Proof. The proof is essentially identical to the proof of Corollary 2. ¥

4.5.3 Average distance to suspects

In this section, we study the expectation of Dsusp
i , defined via (119). Obviously, it does not

depend on i. Therefore, it suffices to compute E [Dsusp
i] for i = N only.

Lemma 3. Suppose that k > 0 and d ≥ L > 0 are positive integers, and that N is defined
via (121). Suppose further that x1, . . . ,xN−1 are i.i.d. standard normal random vectors in
R

d, and that σ = + · · ·+ is a word of length L. We define the integer random variable J
to be the number of xi’s that belong to one of the quadrants Qd

σ0 , . . . , Q
d
σL, defined via (5),

(6) in Section 2.1. In other words,

J =
∣

∣

∣

{

xi : xi ∈ Qd
σ0 ∪ · · · ∪ Qd

σL , i = 1, . . . , N − 1
}∣

∣

∣ . (151)

Then, J has binomial distribution Bin(N − 1, p), with real parameter 0 < p < 1, defined by
the formula

p =
L + 1

2L
. (152)

The binomial distribution is defined via (19) in Section 2.3.

Proof. Due to radial symmetry of standard normal distribution, the probability of any xi

being in Qd
µ does not depend on µ. Therefore, the probability of any xi being in one of

the quadrants Qd
σ0 , . . . , Q

d
σL is given by p, defined via (152). Thus the random variable J ,

defined via (151), has distribution Bin(N − 1, p). ¥

34

Corollary 4. Under the assumptions of Lemma 3, the expectation and variance of J are
given by the formulae

E [J] = k · (L + 1) ·
(

1 − 1

k · 2L

)

= k · (L + 1) + O
(

2−L
)

(153)

and

Var [J] = E [J] ·
(

1 − L + 1

2L

)

= k · (L + 1) + O
(

L2 · 2−L
)

. (154)

Proof. The identities (153), (154) follow from the combination of (20), (121) and Lemma 3.
¥

Corollary 5. Under the assumptions of Lemma 3, the probability of J being less that k is
exponentially small in L and k. More precisely,

P {J < k} = O

(

exp

[

−kL

2

])

. (155)

Proof. Due to the central limit theorem and (153), (154), the probability of J < k is given
by the formula

P {J < k} ≈ P

{

J − kL√
kL

< −
√

kL

}

≈ Φ(−
√

kL)

= O

(

erfc

(
√

kL

2

))

= O

(

exp

[

−kL

2

])

, (156)

where the functions erfc, Φ are given by (13), (22), respectively. ¥

Theorem 12. Suppose that k > 0 and d ≥ L > 0 are positive integers, N is defined via
(121), and a ∈ R

d is a vector, all of whose coordinates are positive. Suppose further that
x1, . . . ,xN are i.i.d. standard normal random vectors in R

d, and Dsusp
N is defined via (119).

Then, the conditional expectation of Dsusp
N given that xN = a is provided by the formula

E
[

Dsusp
N | xN = a

]

=

1

k

N−1
∑

j=k

P {J = j} ·
k

∑

i=1

∫ 1

0

(

Gσ
a

)−1
(t) · fB(i,j+1−i)(t) dt, (157)

where J is defined via (151), σ = + · · ·+ is a word of length L,
(

Gσ
a

)−1
is the inverse of

the function Gσ
a defined via (145), and fB(i,j+1−i) is the pdf of the beta distribution, defined

via (28).

Proof. Suppose that xN = a. In particular, xN ∈ Bσ for σ = +, . . . ,+, as defined by
(100). Then, the k suspects xs(N,1), . . . ,xs(N,k) of xN are chosen among those points xi

with i = 1, . . . , N − 1, that belong to the set Vσ, defined via (107). We denote the indices
of these points by c(1, J), · · · , c(J, J). In other words,

Vσ =
{

xc(1,J), . . . ,xc(J,J)

}

. (158)

35

The distribution of the number of points J in Vσ is described in Lemma 3 in Section 4.5.3.
Now, suppose that J = j for some j = k, . . . , N − 1. In this case, the vectors

xc(1,j), . . . ,xc(j,j) are i.i.d., and, for i = 1, . . . , j,

xc(i,j) ∼ N(0d, Id) | Qd
σ0 ∪ · · · ∪ Qd

σL , (159)

as in (146). We combine Lemma 2, Lemma 3 and (159) to conclude that for j = k, . . . , N−1,

E
[

Dsusp
N | xN = a, J = j

]

=
1

k

k
∑

i=1

∫ 1

0
(Gσ

a)−1(t) · fB(i,j+1−i)(t) dt. (160)

If j = 1, . . . , k − 1, we say that Dsusp
N = 0. Due to Corollary 5, the probability of the

event {J < k} is exponentially small, hence the effects of this convention are negligible.
Obviously,

E
[

Dsusp
N | xN = a

]

=
N−1
∑

j=k

P {J = j} · E
[

Dsusp
N | xN = a, J = j

]

. (161)

Thus the identity (157) follows from the combination of Lemma 3, (160) and (161). ¥

The following theorem provides an approximation to the right-hand side of (157).

Theorem 13. Suppose that k > 0 and d ≥ L > 0 are positive integers, and N is defined
via (121). Suppose further that σ = + · · ·+ is a word of length L. We define the function
Dsusp : (0,∞)d → R by the formula

Dsusp(a) =
1

k

k
∑

i=1

(

Gσ
a

)−1
(

i

k · (L + 1) + 1

)

, (162)

where
(

Gσ
a

)−1
is the inverse of the function Gσ

a , defined via (145). Then, for all vectors

with positive coordinates a ∈ (0,∞)d,

E
[

Dsusp
N | xN = a

]

= Dsusp(a) + O
(

d + ‖a‖2
)

, d → ∞. (163)

where E
[

Dsusp
N | xN = a

]

is the same as in (157) of Theorem 12. Also,

E
[

Dsusp
N | xN = a

]

= Dsusp(a) + O

(

1√
k

)

, k → ∞. (164)

In other words, the identity (163) holds, if we keep k, L fixed and let d → ∞, and the
identity (164) holds, if we keep d, L fixed and let k → ∞.

Proof. We combine Lemma 2, Corollary 2 in Section 4.5.2 and Theorem 12 to conclude that

E
[

Dsusp
N | xN = a

]

=

1

k
·

N−1
∑

j=k

P {J = j} ·
k

∑

i=1

(

Gσ
a

)−1
(

i

j + 1

)

+ O
(

d + ‖a‖2
)

. (165)

36

By carrying out manipulations along the lines of the proofs of Theorem 11 in Section 4.5.1
and Corollaries 2, 3 in Section 4.5.2, we easily see that

E
[

Dsusp
N | xN = a

]

= O
(

d + ‖a‖2
)

. (166)

Thus (163) follows from the combination of Corollary 4, Corollary 5, (165) and (166). The
proof of (164) using Theorem 6 in Section 3 is analogous to the proof of (130) in Theorem 11
in Section 4.5.1. ¥

The following theorem provides an approximation to the expectation E
[

Dsusp
N

]

, defined
via (119). The error of this approximation will be verified via numerical experiments.

Theorem 14. Suppose that k > 0 and d ≥ L > 0 are positive integer, and x1, . . . ,xN

are i.i.d. standard normal random vectors in R
d. We define the real number Dsusp

appr by the
formula

Dsusp
appr =

∫ ∞

λ=0
Avg

S+
d

(
√

λ)

(Dsusp(a)) · fχ2
d
(λ) dλ, (167)

where the function fχ2
d

is defined via (23), the set S+
d (

√
λ) is defined via (11), the function

Dsusp : (0,∞)d → R is defined via (162), and the average of Dsusp over S+
d (

√
λ) is taken in

the sense of Definition 2 in Section 2.2 with respect to the (d−1)-dimensional area integral.
Then,

E
[

Dsusp
N

]

= Dsusp
appr + O(d), d → ∞. (168)

where the real random variable Dsusp
N is defined via (119). Also,

E
[

Dsusp
N

]

= Dsusp
appr + O

(

1√
k

)

, k → ∞. (169)

In other words, (168) holds, if we fix k, L and let d → ∞, and (169) holds, if we fix d, L
and let k → ∞.

Proof. We define σ = +, . . . ,+ to be the word of length L and observe that

Qd
σ = (0,∞)d , (170)

due to (6). Obviously, due to radial symmetry of the standard normal distribution,

E
[

Dsusp
N

]

=

∫

Qd
σ

E
[

Dsusp
N | xN = a

]

· P {xN = a}. (171)

We substitute (163) into (171) to obtain the formula

E
[

Dsusp
N

]

=

∫

Qd
σ

(

Dsusp(a) + O
(

d + ‖a‖2
))

· P {xN = a}. (172)

37

We combine (23) and (24) to conclude that
∫

Qd
σ

O
(

d + ‖a‖2
)

· P {xN = a} = O(d). (173)

Next, we combine (18), (10) and (11) in Section 2.2 to compute
∫

Qd
σ

Dsusp(a) P {xN = a} =

∫

Qd
σ

(

2

π

)d/2

e−‖a‖2/2 · Dsusp(a) da =

(

2

π

)d/2 ∫ ∞

r=0
e−r2/2

∫

S+(r)
Dsusp(a) dΩ dr =

(

2

π

)d/2 ∫ ∞

λ=0

dλ

2
√

λ
e−λ/2 · Area(S+

d (
√

λ)) · Avg
S+

d
(
√

λ)

(Dsusp(a)) =

∫ ∞

λ=0

λd/2−1e−λ/2

2d/2Γ(d/2)
· Avg

S+
d

(
√

λ)

(Dsusp(a)) dλ. (174)

Finally, to prove the identity (168), we combine (23), (172), (173) and (174). The identity
(169) readily follows from the combination of (164) and (174). ¥

Remark 4. Clearly, one can substitute (157) into (171) and carry out manipulations along
the lines of (174), to obtain an exact formula for E

[

Dsusp
N

]

. Theorem 14 does not provide
an explicit bound on the difference between E

[

Dsusp
N

]

and Dsusp
appr, defined via (167). This

deficiency will be partially remedied in Section 5.1, via numerical experiments.

4.5.4 Proportion of suspects among true nearest neighbors

In this section, we study the expectation of propi, defined via (120). Obviously, it does not
depend on i. Therefore, it suffices to compute E [propi] for i = N only.

First, we need to prove a number of technical lemmas.

Lemma 4. Suppose that L > 0 is a positive integer, and that the function F : R → [0, 1] is
the cdf of a positive real continuous random variables. For all integer k > 0, we define N
via (121), and also define the random variable F̂N (t) for all real t via (50) in Section 2.3.
Then,

E

[

F̂N

(

F−1(2−L)
)

]

= 2−L + O

(

1√
k

)

. (175)

In other words, if X1, . . . , XN are i.i.d. random variables with cdf F , then the expected
proportion of Xi’s below F−1(2−L) is k/N up to an error of order O(k−1/2). Put differently,
the smallest k values X(1), . . . , X(k) are expected to lie in the interval

I =

(

0, F−1(2−L) + O

(

1√
k

))

. (176)

38

Proof. The identity (175) follows from the combination of Theorems 3, 4 in Section 2.3. ¥

Lemma 5. Suppose that L > 0 is a positive integer, and that α > 0 is a positive real
number. Suppose further, that the function G : R → [0, 1] is the cdf of a positive real
random variable. For all positive integers k > 0, we define positive integer n1 = n1(k) by
the formula

n1 = k · (L + 1) + ⌊α ·
√

k · L⌋. (177)

Also, we define the random variable Ĝn1(t) for all real t via (50) in Section 2.3. Then,

E

[

Ĝn1 (t)
]

= G(t) + O

(

1√
k · L

)

. (178)

Proof. The identity (178) follows from the combination of Theorems 3, 4 in Section 2.3. ¥

Theorem 15. Suppose that k > 0 and d ≥ L > 0 are positive integers, and that N is defined
via (121). Suppose further that x1, . . . ,xN are i.i.d. standard normal random vectors in
R

d, and σ = + · · ·+ is a word of length L. We define the function P : (0,∞)d → [0, 1] by
the formula

P (a) = (L + 1) · Gσ
a

(

F−1
χ2(d,‖a‖2)

(2−L)
)

, (179)

where the function F−1
χ2(d,‖a‖2)

is the inverse of the cdf of χ2(d, ‖a‖2), defined via (25) in

Section 2.3, and the function Gσ
a is defined via (145). Also, we define the random variable

propN via (120). Then, the conditional expectation of propN given that xN = a is provided
by the formula

E [propN | xN = a] = P (a) + O

(
√

L

k

)

, (180)

for any vector a ∈ R
d, all of whose coordinates are positive.

Proof. Suppose that xN = a. In particular, xN ∈ Bσ for σ = +, . . . ,+, as defined by
(100). Then, the k suspects xs(N,1), . . . ,xs(N,k) of xN are chosen among those points xi

with i = 1, . . . , N − 1, that belong to the set Vσ, defined via (107). As in Lemma 3 in
Section 4.5.3, we define the random variable J to be the number of points in Vσ. Due to
Corollary 4 in Section 4.5.3,

J

k
= (L + 1) + Op

(
√

L

k

)

, k → ∞, (181)

in the sense of Definition 6 in Section 2.3. In other words, J/k converges in probability to
(L + 1), as k → ∞, and the error is of order O(k−1/2). Next, for any real positive number
r > 0, we define γ(r) by the formula

γ(r) =
1

J
·
∣

∣

{

x ∈ Vσ : ‖x − a‖2 < r
}∣

∣ . (182)

39

In other words, 0 ≤ γ(r) ≤ 1 is the proportion of those points x ∈ Vσ, whose distance to a

is at most
√

r.
We combine (181), (182), Definition 10 in Section 4.5.2, Lemma 3, Corollary 4 in Sec-

tion 4.5.3 and Lemma 5 to conclude that

E

[

J

k
· γ(r) | xN = a

]

= (L + 1) · Gσ
a (r) + O

(
√

L

k

)

. (183)

Thus (180) follows from the combination of (183) and Lemma 4. ¥

We conclude the section with the theorem, that provides an approximation to the ex-
pectation of propN , defined via (120).

Theorem 16. Suppose that k > 0 and d ≥ L > 0 are positive integer, and x1, . . . ,xN

are i.i.d. standard normal random vectors in R
d. We define the real number Pappr by the

formula

Pappr =

∫ ∞

λ=0
Avg

S+
d

(
√

λ)

(P (a)) · fχ2
d
(λ) dλ, (184)

where the function fχ2
d

is defined via (23), the set S+
d (

√
λ) is defined via (11), the function

P : (0,∞)d → R is defined via (179), and the average of P over S+
d (

√
λ) is taken in the

sense of Definition 2 with respect to the (d − 1)-dimensional area integral. Then,

E [propN] = Pappr + O

(
√

L

k

)

, (185)

where the real random variable propN is defined via (120). In other words, (185) holds, if
we fix d, L and let k → ∞.

Proof. The identity (185) follows from the combination of Theorem 15 and manipulations
along the lines of the proof of Theorem 14. ¥

Remark 5. Theorem 16 does not provide an explicit estimate on the accuracy of (185).
This deficiency will be partially remedied in Section 5.1, via numerical experiments.

5 Numerical Results

This section has two principal purposes. First, we demonstrate the performance of the
algorithm described in Sections 4.2, 4.3. Second, we numerically evaluate the formulae
developed in Section 4.5 and compare the results to the output of the algorithm.

Both algorithm and the computations have been implemented in FORTRAN (Lahey 95
Linux version). MATLAB and Mathematica have been used for some auxiliary tasks (e.g.
graphics, symbolic manipulations etc.). The numerical experiments have been carried out
on a modern laptop computer, with DualCore CPU 2.53 GHz and 2.9GB RAM.

40

5.1 Numerical illustration of the analysis

In this section, we illustrate the analysis of Section 4.5 via several numerical examples.

5.1.1 Experiment 1: distance to true nearest neighbors

In this experiment, we approximate E
[

Dtrue
N

]

, defined via (118), by using three different
schemes. The results of the computations are compared in Tables 2, 4. See also Figures 2,
3, 4(a).

In the computations, we first choose more or less arbitrarily the positive integer param-
eters d, k, L and set N via (121).

First way to approximate E
[

Dtrue
N

]

: Monte Carlo. We generate N standard nor-
mal random vectors x1, . . . ,xN in R

d and compute the quantity Dtrue
N , defined by (118).

This procedure is repeated M > 0 times to yield a sequence of values Dtrue
N (1), . . . , Dtrue

N (M),
all computed via (118). For this sequence, we compute the sample mean

Esmpl

[

Dtrue
]

=
1

M

M
∑

i=1

Dtrue
N (i) (186)

and the sample variance

Varsmpl

[

Dtrue
]

=
1

M

M
∑

i=1

(

Dtrue
N (i) − Esmpl

[

Dtrue
])2

. (187)

Also, we define the statistical error by the formula

errstat =
2

Esmpl [Dtrue]
·
√

Varsmpl [Dtrue]

M
. (188)

This formula roughly gives the relative error of the estimation of E
[

Dtrue
N

]

(118) by the
sample mean (186). The values (186), (188) appear in the last two columns of Tables 2, 4.

Second way to approximate E
[

Dtrue
N

]

: Theorem 10. We evaluate the integral
(122) numerically, by using the trapezoidal rule. The precision of this calculation is at least
three decimal digits. The result appears in the third column of Tables 2, 4.

Third way to approximate E
[

Dtrue
N

]

: Theorem 11. We evaluate the integral (128)
numerically, by using the trapezoidal rule. The precision of this calculation is at least three
decimal digits. The result appears in the fourth column of Tables 2, 4.

Structure of Tables 2, 4. The results of Experiment 1 are shown in Tables 2, 4
below. The first and second column contain the dimensionality d and the integer parameter
L, respectively. The number of points N is set via (121), with k = 30. The third column
contains the value E

[

Dtrue
N

]

, computed via numerical evaluation of (122). The fourth
column contains the value Dtrue

appr, computed via numerical evaluation of (128). The fifth
column contains the relative error of approximating E

[

Dtrue
N

]

by Dtrue
appr. In other words,

err =

∣

∣E
[

Dtrue
N

]

− Dtrue
appr

∣

∣

E
[

Dtrue
N

] . (189)

41

The sixth column contains the sample mean Esmpl

[

Dtrue
]

, evaluated via (186). The last
column contains the relative statistical error, computed via (188).

Table 1 contains the choice of parameters k, L, N, d, M , corresponding to Table 2. For
L > 15, the quantity (186) was not computed.

Table 3 contains the choice of parameters k, L, N, d, M , corresponding to Table 4. For
L > 15, the quantity (186) was not computed.

k d L N M

30 11, 20, 30, . . . , 110 10 30,720 105

30 16, 20, 30, . . . , 110 15 983,040 104

30 21, 25, 30, 40, . . . , 110 20 31,457,280 -
30 26, 30, 40, . . . , 110 25 1,006,632,960 -

Table 1: Parameters for Table 2 (see Section 5.1.1).

5.1.2 Experiment 2: distance to suspects

In this experiment, we approximate E
[

Dsusp
N

]

, defined via (119), by using three different
schemes. The results of the computations are compared in Tables 6, 8. See also Figures 2,
3, 4(a).

In the computations, we first choose more or less arbitrarily the positive integer param-
eters d, k, L and set N via (121).

First way to approximate E
[

Dsusp
N

]

: Monte Carlo. We choose the positive integer
parameter M > 0 and perform the following operations:

1. Generate a random vector a ∼ N(0d, Id) | (0,∞)d. In other words, a is the standard
normal vector in R

d, conditioned on the set (0,∞)d in the sense of Definition 4 in
Section 2.3.

2. Generate a random variable J ∼ Binom
(

N − 1, (L + 1) · 2−L
)

, as in Lemma 3 in
Section 4.5.3.

3. Generate J i.i.d. random vectors x1, . . . ,xJ , such that for all i = 1, . . . , J ,

xi ∼ N(0d, Id) | Qd
σ0 ∪ · · · ∪ Qd

σL , (190)

where σ = + · · ·+ is a word of length L, and the quadrants Qd
σj with j = 0, . . . , L

are defined by (5), (6) (see also Lemma 2 in Section 4.5.2).

4. Define the average square of the distance Davg from a to its k nearest neighbors among
x1, . . . ,xN by the formula

Davg =
1

k

k
∑

i=1

‖xt(a,i) − a‖2, (191)

in agreement with Definition 9 in Section 4.5.2.

42

d L E
[

Dtrue
N

]

Dtrue
appr err Esmpl

[

Dtrue
]

errstat

11 10 0.39062E+01 0.39411E+01 0.89284E-02 0.39080E+01 0.22695E-02
20 10 0.12435E+02 0.12519E+02 0.67221E-02 0.12437E+02 0.14446E-02
30 10 0.24141E+02 0.24275E+02 0.55572E-02 0.24159E+02 0.10980E-02
40 10 0.37135E+02 0.37316E+02 0.48885E-02 0.37163E+02 0.90592E-03
50 10 0.50957E+02 0.51183E+02 0.44471E-02 0.50996E+02 0.78771E-03
60 10 0.65368E+02 0.65638E+02 0.41298E-02 0.65463E+02 0.70710E-03
70 10 0.80227E+02 0.80539E+02 0.38886E-02 0.80340E+02 0.64615E-03
80 10 0.95440E+02 0.95792E+02 0.36976E-02 0.95551E+02 0.59362E-03
90 10 0.11094E+03 0.11133E+03 0.35417E-02 0.11105E+03 0.55385E-03
100 10 0.12668E+03 0.12711E+03 0.34115E-02 0.12683E+03 0.52273E-03
110 10 0.14263E+03 0.14310E+03 0.33008E-02 0.14279E+03 0.49427E-03

16 15 0.52416E+01 0.52801E+01 0.73572E-02 0.52455E+01 0.59071E-02
20 15 0.84454E+01 0.85007E+01 0.65421E-02 0.84811E+01 0.50512E-02
30 15 0.18138E+02 0.18235E+02 0.53219E-02 0.18119E+02 0.36405E-02
40 15 0.29399E+02 0.29535E+02 0.46406E-02 0.29450E+02 0.30694E-02
50 15 0.41678E+02 0.41853E+02 0.41999E-02 0.41703E+02 0.26266E-02
60 15 0.54688E+02 0.54901E+02 0.38879E-02 0.54785E+02 0.23223E-02
70 15 0.68254E+02 0.68503E+02 0.36533E-02 0.68416E+02 0.21472E-02
80 15 0.82261E+02 0.82546E+02 0.34694E-02 0.82342E+02 0.19335E-02
90 15 0.96629E+02 0.96950E+02 0.33204E-02 0.96904E+02 0.18334E-02
100 15 0.11129E+03 0.11165E+03 0.31969E-02 0.11138E+03 0.17133E-02
110 15 0.12622E+03 0.12661E+03 0.30923E-02 0.12646E+03 0.16136E-02

21 20 0.65680E+01 0.66092E+01 0.62731E-02
25 20 0.96302E+01 0.96851E+01 0.57026E-02
30 20 0.13944E+02 0.14016E+02 0.51775E-02
40 20 0.23783E+02 0.23890E+02 0.44822E-02
50 20 0.34789E+02 0.34929E+02 0.40390E-02
60 20 0.46635E+02 0.46809E+02 0.37288E-02
70 20 0.59125E+02 0.59332E+02 0.34977E-02
80 20 0.72126E+02 0.72365E+02 0.33179E-02
90 20 0.85546E+02 0.85818E+02 0.31731E-02
100 20 0.99319E+02 0.99623E+02 0.30537E-02
110 20 0.11339E+03 0.11372E+03 0.29531E-02

26 25 0.78876E+01 0.79310E+01 0.55042E-02
30 25 0.10858E+02 0.10913E+02 0.50860E-02
40 25 0.19487E+02 0.19572E+02 0.43756E-02
50 25 0.29394E+02 0.29510E+02 0.39276E-02
60 25 0.40233E+02 0.40379E+02 0.36169E-02
70 25 0.51788E+02 0.51963E+02 0.33873E-02
80 25 0.63913E+02 0.64118E+02 0.32096E-02
90 25 0.76508E+02 0.76742E+02 0.30674E-02
100 25 0.89497E+02 0.89761E+02 0.29505E-02
110 25 0.10282E+03 0.10311E+03 0.28525E-02

Table 2: Square of the distance to true nearest neighbors (see Section 5.1.1).
43

k d L N M

30 4, 5, . . . , 15 d 30 · 2L 105

30 16, 17, 18, 19 d 30 · 2L -
30 20, 25, . . . , 100 d 30 · 2L -

Table 3: Parameters for Table 4 (see Section 5.1.1).

d L E
[

Dtrue
N

]

Dtrue
appr err Esmpl

[

Dtrue
]

errstat

4 4 0.14533E+01 0.14668E+01 0.93041E-02 0.14497E+01 0.41584E-02
5 5 0.17470E+01 0.17653E+01 0.10475E-01 0.17477E+01 0.36375E-02
6 6 0.20354E+01 0.20571E+01 0.10666E-01 0.20425E+01 0.32999E-02
7 7 0.23201E+01 0.23444E+01 0.10467E-01 0.23192E+01 0.30233E-02
8 8 0.26017E+01 0.26280E+01 0.10117E-01 0.26008E+01 0.27950E-02
9 9 0.28810E+01 0.29090E+01 0.97180E-02 0.28805E+01 0.26246E-02
10 10 0.31582E+01 0.31876E+01 0.93144E-02 0.31570E+01 0.24719E-02
11 11 0.34338E+01 0.34644E+01 0.89257E-02 0.34370E+01 0.23502E-02
12 12 0.37079E+01 0.37396E+01 0.85599E-02 0.37079E+01 0.22385E-02
13 13 0.39808E+01 0.40135E+01 0.82191E-02 0.39818E+01 0.21449E-02
14 14 0.42527E+01 0.42863E+01 0.79034E-02 0.42553E+01 0.20704E-02
15 15 0.45235E+01 0.45580E+01 0.76113E-02 0.45300E+01 0.19793E-02

16 16 0.47936E+01 0.48288E+01 0.73413E-02
17 17 0.50629E+01 0.50988E+01 0.70914E-02
18 18 0.53316E+01 0.53681E+01 0.68599E-02
19 19 0.55996E+01 0.56368E+01 0.66450E-02
20 20 0.58671E+01 0.59049E+01 0.64452E-02

25 25 0.71978E+01 0.72383E+01 0.56271E-02
30 30 0.85201E+01 0.85629E+01 0.50296E-02
35 35 0.98363E+01 0.98813E+01 0.45739E-02
40 40 0.11148E+02 0.11195E+02 0.42161E-02
45 45 0.12456E+02 0.12505E+02 0.39279E-02
50 50 0.13761E+02 0.13812E+02 0.36910E-02
55 55 0.15065E+02 0.15117E+02 0.34928E-02
60 60 0.16366E+02 0.16420E+02 0.33247E-02
65 65 0.17666E+02 0.17722E+02 0.31802E-02
70 70 0.18964E+02 0.19022E+02 0.30548E-02
75 75 0.20261E+02 0.20321E+02 0.29449E-02
80 80 0.21557E+02 0.21619E+02 0.28478E-02
85 85 0.22852E+02 0.22916E+02 0.27615E-02
90 90 0.24147E+02 0.24212E+02 0.26841E-02
95 95 0.25440E+02 0.25507E+02 0.26145E-02
100 100 0.26733E+02 0.26802E+02 0.25513E-02

Table 4: Square of the distance to true nearest neighbors (see Section 5.1.1).

44

We repeat this sequence of operations M > 0 times, to obtain M values Davg(1), . . . , Davg(M),
all computed via (191). Next, we compute the sample mean

Esmpl [D
susp] =

1

M

M
∑

i=1

Davg(i) (192)

and the sample variance

Varsmpl [D
susp] =

1

M

M
∑

i=1

(Davg(i) − Esmpl [D
susp])2 . (193)

Also, we define the statistical error by the formula

errstat =
2

Esmpl [Dsusp]
·
√

Varsmpl [Dsusp]

M
, (194)

in complete analogy to (186), (187) and (188). The value (192) appears in the third column
of Tables 6, 8.

Second way to approximate E
[

Dsusp
N

]

: RANN. We implement the Randomized
Approximate Nearest Neighbor algorithm (see Sections 4.2, 4.3). Then, we choose the
positive integer parameters 1 ≤ M1 < N and M2 > 0. Next, we generate N i.i.d. random
vectors x1, . . . ,xN , such that

xi ∼ N(0d, Id), (195)

for all i = 1, . . . , N . For each xi, the algorithm finds its k suspects and, in particular,
evaluates Dsusp

i via (119). We define the average of Dsusp
i over i = 1, . . . , M1 by the formula

Dsusp
algo =

1

M1

M1
∑

i=1

Dsusp
i . (196)

Generation of the points and invocation of RANN are repeated M2 times, to yield a sequence
of average values Dsusp

algo (1), . . . , Dsusp
algo (M2), all computed via (196). Next, we compute the

sample mean

Esmpl [Dalgo] =
1

M2

M2
∑

i=1

Dsusp
algo (i) (197)

and the sample variance

Varsmpl [Dalgo] =
1

M2

M2
∑

i=1

(

Dsusp
algo (i) − Esmpl [Dalgo]

)2
. (198)

Also, we define the statistical error by the formula

erralgo =
2

Esmpl [Dalgo]
·
√

Varsmpl [Dalgo]

M2
, (199)

45

in complete analogy to (192), (193) and (194). The values (197), (199) appear in the fourth
and fifth columns of Tables 6, 8, respectively.

Third way to approximate E
[

Dsusp
N

]

: Theorem 14. We choose the positive integer
parameter K > 0 and evaluate numerically the quantity Dsusp

appr , defined via (167). This
evaluation consists of the following steps.

1. Choose equispaced discretization points t1, . . . , t50 of the interval

I =
(

10−3, 1 − 10−3
)

. (200)

2. Define λ1, . . . , λ50 by the formula

λi = F−1
χ2

d

(ti), (201)

for all i = 1, . . . , 50, where F−1
χ2

d

is the inverse of the cdf of χ2
d distribution (see (23)).

3. For each i = 1, . . . , 50, generate K i.i.d. random vectors a
i
1, . . . ,a

i
K , having uniform

distribution on the set S+
d (

√
λi), defined via (11).

4. For each i = 1, . . . , 50 and j = 1, . . . , K, evaluate Dsusp(ai
j), defined via (162). The

evaluation is based on Theorem 9 in Section 3. More specifically, Gσ
a in (162) is com-

puted via inverse Fourier transform of hσ
a defined by (86), and

(

Gσ
a

)−1
is computed

via a combination of bisection and Newton’s method.

5. For each i = 1, . . . , 50, compute the empirical average

Avg(λi) =
1

K

K
∑

j=1

Dsusp(ai
j). (202)

Obviously,

Avg
S+

d
(
√

λi)

(Dsusp(a)) = Avg(λi) + O

(

1√
K

)

. (203)

6. Evaluate the integral (167) by using the trapezoidal rule with nodes (201) and function
values (202), i.e. by the formula

Dsusp
num = (t2 − t1) ·

(

1

2
(Avg(λ1) + Avg(λ50)) +

49
∑

i=2

Avg(λi)

)

. (204)

The value (204) appears in the sixth column of Tables 6, 8.
Structure of Tables 6, 8. The results of Experiment 2 are shown in Tables 6, 8

below. The first two columns contain the dimensionality d and the integer parameter L.
The third column contains the sample mean Esmpl [D

susp], defined via (192). The fourth
and fifth columns contain the sample mean Esmpl [Dalgo] and its relative statistical error
erralgo, defined via (197), (199), respectively. The sixth column contains Dsusp

num, defined via

46

(204). The last column contains the relative error errnum of approximating Esmpl [D
susp]

by Dsusp
num, defined by the formula

errnum =
|Dsusp

num − Esmpl [D
susp]|

Esmpl [Dsusp]
. (205)

Table 5 contains the choice of parameters k, d, L, N, M, M1, M2, K, corresponding to Table 6.
Table 7 contains the choice of the same parameters, corresponding to Table 8. See also
Figures 2, 3, 4(a).

k d L N M M1 M2 K

30 11, 20, 30, . . . , 110 10 30,720 105 100 1000 8000
30 16, 20, 30, 40, 50 15 983,040 105 100 100 8000
30 60, 70, 80, 90, 100, 110 15 983,040 105 - - 8000
30 21, 25, 30, 40, . . . , 110 20 31,457,280 - - - 8000
30 26, 30, 40, . . . , 110 25 1,006,632,960 - - - 8000

Table 5: Parameters for Table 6 (see Section 5.1.2).

5.1.3 Experiment 3: proportion of suspects among true nearest neighbors

In this experiment, we approximate E [propN], defined via (120), by using two different
schemes. The results of the computations are compared in Tables 10, 12. See also Fig-
ures 4(b), 5.

In the computations, we first choose more or less arbitrarily the positive integer param-
eters d, k, L and set N via (121).

First way to approximate E [propN]: RANN. This computation is completely
analogous to the second way to compute E

[

Dsusp
N

]

in Experiment 2 (Section 5.1.2). More
specifically, we implement the Randomized Approximate Nearest Neighbor algorithm (see
Sections 4.2, 4.3). Then, we choose the positive integer parameters 1 ≤ M1 < N and
M2 > 0. Next, we generate N i.i.d. random vectors x1, . . . ,xN , such that

xi ∼ N(0d, Id), (206)

for all i = 1, . . . , N . For each xi, the algorithm finds its k suspects. For all i = 1, . . . , M1,
we also find k true nearest neighbors of each xi by direct scanning. Then, we compute
propi via (120), for all i = 1, . . . , M1, and define the average of propalgo by the formula

propalgo =
1

M1

M1
∑

i=1

propi. (207)

Generation of the points and invocation of RANN are repeated M2 times, to yield a sequence
of average values propalgo(1), . . . , propalgo(M2), all computed via (196). Next, we compute
the sample mean

Esmpl

[

propalgo

]

=
1

M2

M2
∑

i=1

propalgo(i) (208)

47

d L Esmpl [D
susp] Esmpl [Dalgo] erralgo Dsusp

num errnum

11 10 0.48725E+01 0.48973E+01 0.22526E-02 0.48268E+01 0.93941E-02
20 10 0.16070E+02 0.16130E+02 0.13657E-02 0.15875E+02 0.12171E-01
30 10 0.30873E+02 0.30898E+02 0.10666E-02 0.30416E+02 0.14807E-01
40 10 0.46662E+02 0.46722E+02 0.94936E-03 0.45976E+02 0.14695E-01
50 10 0.63115E+02 0.63171E+02 0.79258E-03 0.62116E+02 0.15839E-01
60 10 0.79931E+02 0.79958E+02 0.70383E-03 0.78638E+02 0.16180E-01
70 10 0.97050E+02 0.97030E+02 0.65679E-03 0.95442E+02 0.16567E-01
80 10 0.11441E+03 0.11442E+03 0.58364E-03 0.11246E+03 0.17066E-01
90 10 0.13184E+03 0.13179E+03 0.60609E-03 0.12964E+03 0.16630E-01
100 10 0.14956E+03 0.14965E+03 0.57518E-03 0.14699E+03 0.17202E-01
110 10 0.16738E+03 0.16736E+03 0.54629E-03 0.16444E+03 0.17511E-01

16 15 0.70805E+01 0.71116E+01 0.56504E-02 0.69991E+01 0.11497E-01
20 15 0.11688E+02 0.11717E+02 0.43907E-02 0.11541E+02 0.12613E-01
30 15 0.25294E+02 0.25297E+02 0.39430E-02 0.24908E+02 0.15263E-01
40 15 0.40331E+02 0.40520E+02 0.28932E-02 0.39729E+02 0.14915E-01
50 15 0.56194E+02 0.56387E+02 0.27690E-02 0.55320E+02 0.15559E-01

60 15 0.72593E+02 0.71397E+02 0.16488E-01
70 15 0.89244E+02 0.87816E+02 0.15997E-01
80 15 0.10628E+03 0.10449E+03 0.16758E-01
90 15 0.12344E+03 0.12138E+03 0.16673E-01
100 15 0.14078E+03 0.13843E+03 0.16759E-01
110 15 0.15836E+03 0.15563E+03 0.17245E-01

21 20 0.92924E+01
25 20 0.13897E+02
30 20 0.20297E+02
40 20 0.34375E+02
50 20 0.49453E+02
60 20 0.65133E+02
70 20 0.81234E+02
80 20 0.97635E+02
90 20 0.11427E+03
100 20 0.13111E+03
110 20 0.14811E+03

26 25 0.11672E+02
30 25 0.16350E+02
40 25 0.29602E+02
50 25 0.44149E+02
60 25 0.59451E+02
70 25 0.75240E+02
80 25 0.91391E+02
90 25 0.10783E+03
100 25 0.12445E+03
110 25 0.14127E+03

Table 6: Square of the distance to suspects (see Section 5.1.2).
48

k d L N M M1 M2 K

30 4, 5, . . . , 15 d k · 2L 105 100 1000 8000
30 16, 17, 18, 19 d k · 2L - - - 8000
30 20, 25, . . . , 100 d k · 2L - - - 8000

Table 7: Parameters for Table 8 (see Section 5.1.2).

d L Esmpl [D
susp] Esmpl [Dalgo] erralgo Dsusp

num errnum

4 4 0.15469E+01 0.15563E+01 0.41439E-02 0.15403E+01 0.42265E-02
5 5 0.19024E+01 0.19186E+01 0.36239E-02 0.19027E+01 0.10663E-03
6 6 0.22896E+01 0.23011E+01 0.30859E-02 0.22751E+01 0.63230E-02
7 7 0.26745E+01 0.26880E+01 0.29247E-02 0.26573E+01 0.63966E-02
8 8 0.30703E+01 0.30898E+01 0.26700E-02 0.30482E+01 0.71813E-02
9 9 0.34747E+01 0.34873E+01 0.25000E-02 0.34472E+01 0.78994E-02
10 10 0.38786E+01 0.39063E+01 0.23009E-02 0.38525E+01 0.67305E-02
11 11 0.43011E+01 0.43329E+01 0.23072E-02 0.42664E+01 0.80571E-02
12 12 0.47213E+01 0.47581E+01 0.21612E-02 0.46867E+01 0.73455E-02
13 13 0.51647E+01 0.51931E+01 0.19941E-02 0.51142E+01 0.97913E-02
14 14 0.56103E+01 0.56296E+01 0.19248E-02 0.55456E+01 0.11545E-01
15 15 0.60558E+01 0.60758E+01 0.18531E-02 0.59824E+01 0.12114E-01

16 16 0.64233E+01
17 17 0.68714E+01
18 18 0.73228E+01
19 19 0.77782E+01

20 20 0.82386E+01
25 25 0.10585E+02
30 30 0.13010E+02
35 35 0.15492E+02
40 40 0.18019E+02
45 45 0.20598E+02
50 50 0.23206E+02
55 55 0.25856E+02
60 60 0.28532E+02
65 65 0.31232E+02
70 70 0.33955E+02
75 75 0.36700E+02
80 80 0.39462E+02
85 85 0.42250E+02
90 90 0.45049E+02
95 95 0.47865E+02
100 100 0.50697E+02

Table 8: Square of the distance to suspects (see Section 5.1.2).

49

and the sample variance

Varsmpl

[

propalgo

]

=
1

M2

M2
∑

i=1

(

propalgo(i) − Esmpl

[

propalgo

])2
. (209)

Also, we define the statistical error by the formula

erralgo =
2

Esmpl

[

propalgo

] ·

√

Varsmpl

[

propalgo

]

M2
, (210)

in complete analogy to (197), (198) and (199). The values (208), (210) appear in the third
and fourth columns of Tables 10, 12, respectively.

Second way to approximate E [propN]: Theorem 16. This computation is com-
pletely analogous to the third way to compute E

[

Dsusp
N

]

in Experiment 2 (Section 5.1.2).
More specifically, we choose the positive integer parameter K > 0 and evaluate numerically
the quantity Pappr, defined via (184). This evaluation consists of the following steps.

1. Choose equispaced discretization points t1, . . . , t50 of the interval

I =
(

10−3, 1 − 10−3
)

. (211)

2. Define λ1, . . . , λ50 by the formula

λi = F−1
χ2

d

(ti), (212)

for all i = 1, . . . , 50, where F−1
χ2

d

is the inverse of the cdf of χ2
d distribution (see (23)).

3. For each i = 1, . . . , 50, generate K i.i.d. random vectors a
i
1, . . . ,a

i
K , having uniform

distribution on the set S+
d (

√
λi), defined via (11).

4. For each i = 1, . . . , 50 and j = 1, . . . , K, evaluate P (ai
j), defined via (179). The

evaluation is based on Theorem 9. More specifically, Gσ
a in (162) is computed via

inverse Fourier transform of hσ
a defined by (86).

5. For each i = 1, . . . , 50, compute the empirical average

Avg(λi) =
1

K

K
∑

j=1

P (ai
j). (213)

Obviously,

Avg
S+

d
(
√

λi)

(P (a)) = Avg(λi) + O

(

1√
K

)

. (214)

6. Evaluate the integral (184) by using the trapezoidal rule with nodes (212) and function
values (213), i.e. by the formula

propnum = (t2 − t1) ·
(

1

2
(Avg(λ1) + Avg(λ50)) +

49
∑

i=2

Avg(λi)

)

. (215)

50

The value (215) appears in the fifth column of Tables 10, 12.
Structure of Tables 10, 12. The results of Experiment 3 are shown in Tables 10,

12 below. The first two columns contain the dimensionality d and the integer parame-
ter L. The third and fourth columns contain the sample mean Esmpl

[

propalgo

]

and its
relative statistical error erralgo, defined via (208), (210), respectively. The sixth column
contains propnum, defined via (215). The last column contains the relative error errnum of
approximating Esmpl

[

propalgo

]

by propnum, i.e.

errnum =

∣

∣propnum − Esmpl

[

propalgo

]∣

∣

Esmpl

[

propalgo

] . (216)

Table 9 contains the choice of parameters k, d, L, N, M1, M2, K, corresponding to Table 10.
Table 11 contains the choice of the same parameters, corresponding to Table 12.

k d L N M1 M2 K

30 11, 20, 30, . . . , 110 10 30,720 100 1000 8000
30 16, 20, 30, 40, 50 15 983,040 100 100 8000
30 60, 70, 80, 90, 100, 110 15 983,040 - - 8000
30 21, 25, 30, 40, . . . , 110 20 31,457,280 - - 8000
30 26, 30, 40, . . . , 110 25 1,006,632,960 - - 8000

Table 9: Parameters for Table 10 (see Section 5.1.3).

5.1.4 Description of Figures 2-5

In this section, we describe Figures 2-5, containing graphical representation of the data
from Tables 2-12.

Figures 2(a), 2(b) correspond to Tables 4, 8. The parameters of the experiments are
contained in Tables 3, 7, respectively.

In Figure 2(a), we compare E
[

Dtrue
N

]

(third column in Table 4) to Dsusp
num (sixth column

in Table 8). We plot these values, scaled by d = L, as functions of d. In Figure 2(b), we
plot the ratio of Dsusp

num to E
[

Dtrue
N

]

, i.e.

Ratiosusp
true =

Dsusp
num

E
[

Dtrue
N

] . (217)

Figures 3(a), 3(b), 4(a) correspond to Tables 2, 6. The parameters of the experiments
are contained in Tables 1, 5, respectively.

Figure 3(a) is analogous to Figure 2(a). In this figure, we plot E
[

Dtrue
N

]

(third column in
Table 2), scaled by d, as a function of the dimensionality d, for L = 10, 15, 20, 25. Figure 3(a)
is also analogous to Figure 2(a). In this figure, we plot Dsusp

num (sixth column in Table 6),
scaled by d, as a function of the dimensionality d, for L = 10, 15, 20, 25.

Figure 4(a) is analogous to Figure 2(b). In this figure, we plot the ratio Ratiosusp
true

of E
[

Dtrue
N

]

to Dsusp
num (see (217)), as a function of the dimensionality d, for k = 30 and

L = 10, 15, 20, 25. The number of points N is determined via (121), as usual.

51

d L Esmpl

[

propalgo

]

erralgo propnum errnum

11 10 0.35653E+00 0.24860E-02 0.35719E+00 0.18464E-02
20 10 0.17270E+00 0.32763E-02 0.17280E+00 0.57214E-03
30 10 0.11052E+00 0.40884E-02 0.11049E+00 0.25339E-03
40 10 0.83474E-01 0.44436E-02 0.83198E-01 0.32985E-02
50 10 0.68766E-01 0.45101E-02 0.68199E-01 0.82308E-02
60 10 0.59150E-01 0.48360E-02 0.58718E-01 0.73146E-02
70 10 0.52820E-01 0.50961E-02 0.52163E-01 0.12438E-01
80 10 0.47708E-01 0.54266E-02 0.47366E-01 0.71617E-02
90 10 0.44104E-01 0.60874E-02 0.43704E-01 0.90541E-02
100 10 0.41222E-01 0.58727E-02 0.40792E-01 0.10455E-01
110 10 0.38680E-01 0.61434E-02 0.38448E-01 0.60067E-02

16 15 0.16063E+00 0.11954E-01 0.16254E+00 0.11910E-01
20 15 0.10312E+00 0.14959E-01 0.10310E+00 0.12858E-03
30 15 0.46549E-01 0.19168E-01 0.46303E-01 0.52846E-02
40 15 0.27540E-01 0.20330E-01 0.27389E-01 0.54829E-02
50 15 0.18663E-01 0.29931E-01 0.18818E-01 0.82879E-02

60 15 0.14139E-01
70 15 0.11287E-01
80 15 0.93643E-02
90 15 0.80107E-02
100 15 0.70247E-02
110 15 0.62518E-02

21 20 0.69683E-01
25 20 0.42271E-01
30 20 0.25180E-01
40 20 0.11499E-01
50 20 0.64951E-02
60 20 0.41978E-02
70 20 0.29569E-02
80 20 0.22183E-02
90 20 0.17408E-02
100 20 0.14155E-02
110 20 0.11795E-02

26 25 0.28837E-01
30 25 0.16947E-01
40 25 0.59496E-02
50 25 0.27427E-02
60 25 0.14992E-02
70 25 0.92644E-03
80 25 0.62111E-03
90 25 0.44054E-03
100 25 0.33165E-03
110 25 0.25772E-03

Table 10: Proportion of suspects among true nearest neighbors (see Section 5.1.3).
52

k d L N M1 M2 K

30 4, 5, . . . , 15 d k · 2L 100 1000 8000
30 16, 17, 18, 19 d k · 2L - - 8000
30 20, 25, . . . , 100 d k · 2L - - 8000

Table 11: Parameters for Table 12 (see Section 5.1.3).

d L Esmpl

[

propalgo

]

erralgo propnum errnum

4 4 0.84395E+00 0.10289E-02 0.83841E+00 0.65659E-02
5 5 0.76369E+00 0.12647E-02 0.76002E+00 0.48077E-02
6 6 0.68104E+00 0.14977E-02 0.68028E+00 0.11036E-02
7 7 0.60229E+00 0.17059E-02 0.60257E+00 0.45487E-03
8 8 0.52897E+00 0.20661E-02 0.52937E+00 0.74107E-03
9 9 0.46121E+00 0.22241E-02 0.46188E+00 0.14373E-02
10 10 0.39873E+00 0.24370E-02 0.40113E+00 0.60172E-02
11 11 0.34357E+00 0.27155E-02 0.34627E+00 0.78354E-02
12 12 0.29610E+00 0.29615E-02 0.29767E+00 0.52841E-02
13 13 0.25350E+00 0.31033E-02 0.25470E+00 0.47531E-02
14 14 0.21562E+00 0.35412E-02 0.21745E+00 0.84891E-02
15 15 0.18336E+00 0.37995E-02 0.18525E+00 0.10350E-01

16 16 0.15754E+00
17 17 0.13331E+00
18 18 0.11261E+00
19 19 0.95102E-01
20 20 0.80107E-01
25 25 0.33351E-01
30 30 0.13489E-01
35 35 0.53638E-02
40 40 0.21099E-02
45 45 0.81603E-03
50 50 0.31419E-03
55 55 0.11943E-03
60 60 0.45272E-04
65 65 0.17071E-04
70 70 0.64161E-05
75 75 0.23932E-05
80 80 0.89305E-06
85 85 0.33126E-06
90 90 0.12178E-06
95 95 0.45417E-07
100 100 0.16693E-07

Table 12: Proportion of suspects among true nearest neighbors (see Section 5.1.3).

53

Figure 4(b) corresponds to Table 10. The parameters of the experiments are contained
in Table 9.

In Figure 4(b), we plot propnum (fifth column of Table 10). As demonstrated by Ex-
periment 3 (see Section 5.1.3 above and Section 5.1.5 below), this quantity estimates the
average proportion of the suspects among the true nearest neighbors (found by one iteration
of RANN without supercharging). We plot propnum as a function of the dimensionality d on
the logarithmic scales, for fixed number of nearest neighbors k = 30 and L = 10, 15, 20, 25
(the number of points N is defined via (121), as usual).

In Figure 5, we plot propnum (fifth column of Table 12) as a function of dimensionality
d. Here the number of points N grows exponentially with dimensionality, via d = L and
(121). In addition, we illustrate the effects of degree of contact in the definition of Vi and
Vσ, defined via (101), (107), respectively. In other words, we demonstrate how propnum

will change if the algorithm searches for suspects of a point xi ∈ Bσ (see (100)) in the same
box Bσ only (degree of contact zero, Vσ contains roughly k points), or in the boxes Bµ

having degree of contact up to two with Bσ (roughly k · L2 points).
Table 18 corresponds to Figure 5. Note that the first, second and fourth columns of

Table 18 are identical to the first, second and fifth columns of Table 12, respectively (i.e.
contain exactly the same data).

5.1.5 Observations

Several observations can be made from Experiments 1,2,3 (see Tables 2-12) and from the
more detailed experiments by the authors. Some of these observations are illustrated by
Figures 2-5, described in Section 5.1.4 above.

1. E
[

Dtrue
N

]

always overestimates E
[

Dtrue
appr

]

; nevertheless, the relative error decreases
with d and with L, and never exceeds 1% (see Tables 2, 4). Also, the quantities
E

[

Dtrue
N

]

and Esmpl

[

Dtrue
]

(whenever the latter is available) coincide up to the pre-
cision of the calculation, as expected. Roughly speaking, this observation seems to
indicate that the three way to compute E

[

Dtrue
N

]

(see Section 5.1.1) are equivalent, if
low precision is required.

2. The values Esmpl [D
susp] and Esmpl [Dalgo] coincide up to the precision of the calcu-

lation (roughly two significant decimal digits), as expected (see Tables 6, 8). In this
case, we used the fact that the quantity Esmpl [D

susp] has been computed with relative
error at most 0.5% (not shown in the tables). Roughly speaking, this seems to indicate
that the first two ways to compute E

[

Dsusp
N

]

(see Section 5.1.2) are equivalent, if low
precision is required.

3. The quantity Dsusp
num agrees with Esmpl [D

susp] up to the relative error below 2% (see
Tables 6, 8). Additional numerical experiments demonstrate that the quantity Dsusp

num

has been computed with relative error at most 1% (not shown in the tables). This
observation both validates Theorem 14 in Section 4.5.3 and seems to indicate that
Dsusp

num can be used to predict Esmpl [D
susp] up to roughly two decimal digits, when the

latter is unavailable.

54

4. The quantities propnum and Esmpl

[

propalgo

]

agree roughly to two decimal digits,
since errnum is below 2% (see Tables 10, 12). This observation seems to indicate that
propnum can be used to predict Esmpl

[

propalgo

]

up to about two decimal digits, when
the latter is unavailable.

5. The ratio of E
[

Dtrue
N

]

to the dimensionality d decreases with d and approaches the
value about 0.25 (see Figure 2(a)). On the other hand, the ratio of Dsusp

num to d seems
to grow with d, reaching the value about 0.5 at d = 100 (see Figure 2(a)). Note that in
Figures 2(a), 2(b) the dimensionality d roughly equals to the logarithm of the number
of points N , due to (121).

6. The ratio Ratiosusp
true , defined via (217), slowly grows with d (see Figure 2(b)). This

observation seems to indicate that the performance of the algorithm will deteriorate, if
we keep the number of required nearest neighbors k fixed and let N grow exponentially.
On the other hand, for k = 30, d = 20 and N ≈ 106, even one iteration of the
algorithm will result in Ratiosusp

true being only about 1.4. In other words, the distance
to the suspects will not be much larger than the distance to the true nearest neighbors.

7. The ratios of the square of the distances (to both true nearest neighbors and suspects)
grow with dimensionality d, for a fixed number of nearest neighbors k = 30 and number
of points N (see Figures 3(a), 3(b)). Also, for fixed k and d these quantities decrease
with the number of points. For example, for d = 40, the value of E

[

Dtrue
N

]

changes
from roughly d at L = 10 to roughly d/2 at L = 25.

8. The ratio Ratiosusp
true , defined via (217), slowly increases with the number of points

N , for fixed values of number k of nearest neighbors and dimensionality d (see Fig-
ure 4(a)). In other words, the performance of RANN deteriorates with the number
of points, if terms of Ratiosusp

true . However, as number of points is multiplied by 2, this
ratio grows by a factor less than 1.1 for most values of d on Figure 4(a).

9. Perhaps surprisingly, the ratio Ratiosusp
true decreases with dimensionality d, for fixed k

and N (see Figure 4(a)). In other words, in terms of Ratiosusp
true , the performance of the

algorithm actually slowly improves as dimensionality grows. For example, for L = 15
(and N ≈ 106), this ratio decays from the value of about 1.57 at d = 20 to roughly
1.3 at d = 110.

10. The proportion propnum, defined via (215), decays with d for fixed k, N , as expected
(see Figure 4(b)). However, even for d = 40 and N ≈ 106, RANN correctly finds
about 2.7% of true nearest neighbors, on merely one iteration without supercharging.
In other words, after 50 iterations without supercharging RANN will correctly detect
about

75% = 0.75 ≈ 1 − (1 − 0.027)50 (218)

true nearest neighbors, for d = 40 and N ≈ 106 (see also Section 5.2.1).

11. The use of boxes with degree of contact up to two does not dramatically increase the
proportion, while increasing the cost of a single iteration by a factor of d (see Figure 5).

55

In other words, L iterations of RANN, with Vσ defined via (107), will perform better
than a single iteration of the version of RANN, that used boxes of degree of contact
up to two. On the other hand, using only boxes of degree of contact zero will result in
too few candidates for suspects. These observations seem to indicate that the value
1 of degree of contact in (101), (107) strikes the right balance, in terms of cost vs.
performance. Additional numerical experiments, whose results are not reported in
this paper, seem to confirm this statement.

5.2 Illustration of the performance of the algorithm

In this section, we illustrate the performance of RANN (described in Sections 4.2, 4.3) via
several numerical examples. In particular, we demonstrate how the performance is affected
by the initial distribution of the points and supercharging (see Sections 4.2.2, 4.3.3).

5.2.1 Experiment 4: performance of RANN

In this experiment, we run RANN with various parameters on different sets of points and
report on the resulting statistics.

Description of the experiment. We choose the dimensionality d and the number of
points N . Then we choose the number of nearest neighbors k, the number of iterations of
the algorithm T > 0, and whether to perform the supercharging or not. Also, we choose
positive integer parameters 1 ≤ M1 < N and M2 > 0. Next, we generate N vectors
x1, . . . ,xN in R

d in one of the following three different ways:

1. x1, . . . ,xN are independent standard normal random vectors in R
d.

2. x1, . . . ,xN are independent random vectors in R
d, distributed uniformly in the hyper-

cube [0, 1]d. In other words, to generate each xi we generate d independent random
variables Ui(1), . . . , Ui(d), distributed uniformly in [0, 1], and set

xi = (Ui(1), . . . , Ui(d)) . (219)

3. x1, . . . ,xN are independent vectors in R
d, distributed uniformly on the vertices of

the Hamming cube {0, 1}d. More specifically, to generate each xi we generate d
independent random variables Vi(1), . . . , Vi(d), taking values 0 or 1 with probability
1/2. Then, we define xi by the formula

xi = (Vi(1), . . . , Vi(d)) . (220)

In other words, each coordinate of any xi is either zero or one, with equal probability.

We implement RANN and run it on x1, . . . ,xN . For each xi, RANN finds its k suspects,
xs(i,1), . . . ,xs(i,k). Also, for all i = 1, . . . , M1 < N , we find the list xt(i,1), . . . ,xt(i,k) of k
true nearest neighbors of xi, by direct scanning. Then, we compute the quantities Dtrue

i ,
Dsusp

i , propi, defined via (118), (119), (120), respectively, for i = 1, . . . , M1. We define the
average Dtrue

algo by the formula

Dtrue
algo =

1

M1

M1
∑

i=1

Dtrue
i , (221)

56

and the averages Dsusp
algo , propalgo via (196), (207), respectively.

Generation of the points and invocation of RANN are repeated M2 times, to obtain the
values Dtrue

algo(1), . . . , Dtrue
algo(M2), all defined via (221). Then, we define the sample mean of

Dtrue
algo by the formula

Esmpl

[

Dtrue
]

=
1

M2

M2
∑

i=1

Dtrue
algo(i). (222)

The sample means Esmpl [Dalgo] and Esmpl

[

propalgo

]

are defined via (197), (208), respec-
tively. Finally, we define the ratio of Esmpl [Dalgo] to Esmpl

[

Dtrue
]

by the formula

ratiosmpl =
Esmpl [Dalgo]

Esmpl [Dtrue]
. (223)

Structure of Tables 14, 15, 16. Initially, Experiment 4 was conducted 24 times,
with all the combinations of values of the parameters from Table 13. These parameters were
chosen to demonstrate the effects of supercharging on a particular case (fixed dimensionality
d and number of points N , Gaussian distribution of the points). The results are shown in
Tables 14, 15, 16. See also Figures 6, 7, 8.

Table 14 has the following structure. The first column contains the number k of re-
quired nearest neighbors. The next three columns contain ratiosmpl − 1, where ratiosmpl is
defined via (223), for 1, 5, 10 iterations of RANN, respectively. To obtain these values, the
supercharging step was skipped. The last three columns contain the same value, for 1, 5, 10
iterations of RANN, respectively, followed by supercharging.

Table 15 has the same structure as Table 14, but instead of ratiosmpl − 1 it contains
the value Esmpl

[

propalgo

]

, defined via (208). The values in both Tables 14, 15 have relative
error less than 1%.

Table 16 has the same structure as Tables 14, 15, but contains the running time of
RANN in seconds. We recall that the algorithm was compiled and run on a modern laptop
computer, with Dual Core 2.53 GHz CPU and 2.9 Gb RAM.

Structure of Tables 19 - 45. Next, Experiment 4 was conducted 1008 times, for all
the combinations of values the parameters from Table 17. In particular, different values
of dimensionality d and different initial distributions of points were used. The results are
shown in Tables 19 - 45 and also displayed in the corresponding Figures 6 - 23.

The structure of Tables 19 - 45 is similar, but not identical, to that of Tables 14, 15,
16. The first column contains the dimensionality d. The next four columns correspond to
different parameters of RANN (number of iterations T , with or without supercharging).
The second and third columns correspond to RANN without supercharging, T = 1, 10,
respectively. The fourth and fifth columns correspond to RANN with supercharging, T =
1, 10, respectively.

The value shown in Columns 2-5 is one of the three statistics, illustrating the perfor-
mance of RANN. In Tables 19, 21, 23, 25, 27, 29, 31, 33, 35, we show ratiosmpl, defined
via (223). In Tables 20, 22, 24, 26, 28, 30, 32, 34, 36, we show Esmpl

[

propalgo

]

, defined via
(208). In Tables 37 - 45, we show the running time of RANN in seconds.

57

Also, Tables 19 - 45 differ by the requested number of nearest neighbors k (=15, 30, 60),
and the distribution of the points (normal, uniform, Hamming cube). Most of the results
have been computed with relative error about 2%.

Description of Figures 6 - 23. Figures 6 - 23 correspond to Tables 19 - 45. On these
figures, the corresponding quantity (ratiosmpl, Esmpl

[

propalgo

]

or running time) is plotted
as a function of the dimensionality d. Each figure contains four curves, corresponding to one
iteration of RANN without supercharging, ten iterations of RANN without supercharging,
one iteration of RANN with supercharging and ten iterations of RANN with supercharging.

5.2.2 Observations

Several observations can be made from Tables 14, 15, 16.

1. For a fixed k, the proportion of suspects among the true nearest neighbors grows
exponentially with number of iterations T (without supercharging), as expected. For
example, for k = 15, one iteration of RANN determines about 6.2% of true nearest
neighbors correctly (second row, third column in Table 15). After 5 iterations, the
proportion is

26.9% = 0.269 ≈
(

1 − (1 − 0.062)5
)

. (224)

After 10 iterations, the proportion is

46.3% = 0.463 ≈
(

1 − (1 − 0.062)10
)

. (225)

2. Supercharging significantly improves the performance of the algorithm. For exam-
ple, for k = 120, the proportion of correctly determined true nearest neighbors is
about 68%, after 10 iterations of RANN without supercharging. If we also perform
supercharging, this proportion grows to 99.2%.

3. The ratio (223) decreases with number T of iterations, and also if supercharging is
performed (see Table 14).

4. The performance of the algorithm improves as the number of nearest neighbors k
grows (for fixed number of points N = 122, 880 and dimensionality d = 30). This
accuracy comes at the expense of running time of the algorithm (see Section 4.4). We
recall that running time grows roughly linearly with k if no supercharging is done,
and the cost of supercharging grows quadratically with k (see (114)). Table 16 seems
to confirm the predicted cost of the algorithm, as expected.

Also, several observations can be done from Tables 19 - 45 and Figures 6 - 23. In
these observations, we refer to ratiosmpl as ”ratio”, and to Esmpl

[

propalgo

]

as ”proportion”.
We recall that, roughly speaking, the proportion measures how many of the true nearest
neighbors have been found by RANN. On the other hand, the ratio measures how much
average distances to suspects differ from the average distances to true nearest neighbors.

1. As expected, for a fixed d the performance of RANN improves as the number T of
iterations increases, both in terms of ratio and proportion.

58

parameter values

d 30
N 122880 = 30 · 212

M1 1000
M2 10

k 15, 30, 60, 120
T 1, 5, 10

perform supercharging yes, no

Table 13: Parameters for Tables 14, 15, 16 (see Section 5.2.1).

without supercharging with supercharging

k T = 1 T = 5 T = 10 T = 1 T = 5 T = 10

15 0.355E+00 0.128E+00 0.650E-01 0.239E+00 0.724E-01 0.350E-01

30 0.328E+00 0.110E+00 0.521E-01 0.200E+00 0.356E-01 0.143E-01

60 0.302E+00 0.929E-01 0.406E-01 0.177E+00 0.112E-01 0.334E-02

120 0.275E+00 0.764E-01 0.302E-01 0.160E+00 0.186E-02 0.406E-03

Table 14: (Ratio-1) with and without supercharging (see Section 5.2.1).

without supercharging with supercharging

k T = 1 T = 5 T = 10 T = 1 T = 5 T = 10

15 0.622E-01 0.269E+00 0.463E+00 0.147E+00 0.438E+00 0.630E+00

30 0.756E-01 0.318E+00 0.531E+00 0.202E+00 0.636E+00 0.806E+00

60 0.919E-01 0.375E+00 0.604E+00 0.247E+00 0.848E+00 0.944E+00

120 0.112E+00 0.441E+00 0.681E+00 0.288E+00 0.969E+00 0.992E+00

Table 15: Proportion with and without supercharging (see Section 5.2.1).

without supercharging with supercharging

k T = 1 T = 5 T = 10 T = 1 T = 5 T = 10

15 0.227E+01 0.123E+02 0.245E+02 0.707E+01 0.176E+02 0.299E+02

30 0.386E+01 0.217E+02 0.443E+02 0.208E+02 0.408E+02 0.639E+02

60 0.715E+01 0.416E+02 0.841E+02 0.667E+02 0.112E+03 0.155E+03

120 0.140E+02 0.834E+02 0.176E+03 0.241E+03 0.364E+03 0.445E+03

Table 16: Running times of RANN, in seconds (see Section 5.2.1).

59

2. As expected, for a fixed d the performance of RANN improves if supercharging is
performed, both in terms of ratio and proportion.

3. For a fixed d, the performance of RANN improves as the number of requested nearest
neighbors k increases, both in terms of ratio and proportion (at the expense of running
time).

4. For a fixed d, the effects of supercharging (especially on proportion) increase as k
grows. For example, in Figure 6(b) (normal distribution, k = 15) we observe, that,
for T = 10 and d = 60, supercharging increases the proportion from 22% to 32% (see
the third and fifth columns in Table 20). On the other hand, in Figure 8(b) (normal
distribution, k = 60) we observe that, for T = 10 and d = 60, supercharging increases
the proportion from 36% to 77% (see the third and fifth columns in Table 24).

5. As expected, the performance of RANN slowly deteriorates in terms of proportion, as
d increases. On the other hand, there is no significant deterioration of performance
in terms of ratio, as d increases.

6. In all the tables and figures, for T = 10 the ratio is always below 1.1, with or without
supercharging.

7. In all the tables and figures, even for as high a dimension as d = 60, as few as ten
iterations with supercharging correctly determine at least 30% of the true nearest
neighbors. Moreover, the error of this detection decays exponentially with number of
iterations T (see also (224), (225)).

8. Tables 19 - 36 and Figures 6 - 14 seem to indicate that RANN is relatively insensitive to
whether the initial distribution of the points is normal, uniform (in the d−dimensional
hypercube) or Hamming (uniform on the vertices of the Hamming cube {0, 1}d).

9. Tables 37 - 45 and Figures 15 - 23 seem to indicate that the running time of RANN
does not depend on the inital distribution of the points, as expected.

10. The running time of RANN, with or without supercharging, grows roughly linearly
with dimensionality d, as expected from (114) (see Tables 37 - 45 and Figures 15 -
23).

11. For fixed dimensionality d, the running time of RANN without supercharging grows
roughly linearly with the requested number of nearest neighbors k, as expected from
(114) (see Tables 37 - 45 and Figures 15 - 23). For example, 10 iterations of RANN in
the case of d = 200 take about 80, 124 and 208 seconds for k = 15, 30, 60, respectively
(see the third column in Tables 39, 42, 45).

12. For fixed dimensionality d, the running time of the supercharging step grows roughly
quadratically with the requested number of nearest neighbors k, as expected from
(114) (see Tables 37 - 45 and Figures 15 - 23). For example, in the case of d = 200
supercharging takes about 15, 60 and 230 seconds for k = 15, 30, 60, respectively.

60

parameter values

N 122880 = 30 · 212

M1 1000
M2 5

d 15, 20, . . . , 95, 100, 110, . . . , 200
k 15, 30, 60
T 1,10

perform supercharging yes, no

points distribution normal, uniform, Hamming cube

Table 17: Parameters for Tables 19 - 45 and Figures 6 - 23 (see Section 5.2.1).

6 Miscellaneous

6.1 Version of RANN for highly asymmetric distributions

In Section 4.2.1, we describe the division of all the points B into boxes Bσ (see e.g. (96),
(97), (98), (100)). Each box Bσ contains roughly k points, if the points in B are approxi-
mately radially symmetric. For a highly asymmetric distribution of points, this is no longer
the case. This might result in a large proportion boxes Bσ having too few or too many
points.

Fortunately, a slight alteration of the construction of the boxes eliminates this problem
for asymmetric distributions of points. Namely, the division is done not by the origin, as in
(100), but by the median of the corresponding coordinate. More specifically, we choose a
real number y(1) such that the first coordinate of half of the points in B is less than y(1).
In other words,

|{x ∈ B : x(1) < y(1)}| = ⌊N/2⌋. (226)

We divide all the points into two disjoint sets

B− = {x ∈ B : x(1) < y(1)} , B+ = {x ∈ B : x(1) ≥ y(1)} . (227)

Obviously, the sizes of B− and B+ are the same if N is even and differ by one if N is odd.
Next, we set y+(2) to be a real number such that the second coordinate of half of the points
in B+ is less than y+(2), i.e.

|{x ∈ B+ : x(2) < y+(2)}| = ⌊N/4⌋. (228)

We split B+ into two disjoint sets B+− and B++ by the same principle, e.g.

B+− = {x ∈ B+ : x(2) < y+(2)} , B++ = {x ∈ B+ : x(2) ≥ y+(2)} . (229)

We construct B−− and B−+ in a similar fashion by using a real number y−(2) such that
the second coordinate of half of the points in B− is less than y−(2), i.e.

|{x ∈ B− : x(2) < y−(2)}| = ⌊N/4⌋. (230)

61

Each of the four boxes B−−, B−+, B+−, B++ contains either ⌊N/4⌋ or ⌊N/4⌋ + 1 points.
Then we repeat the subdivision by splitting each of the four boxes into two by using the
third coordinate, and so on. We proceed until we end up with a collection of 2L boxes
{Bσ} with k or k + 1 points in each box. Here the box index σ is a word of symbols +,−
of length L as in (3) and L is a positive integer such that k · 2L ≤ N < k · 2L+1.

Extensive numerical experiments seem to indicate that for normally distributed points
there are no significant differences in performance between this version of RANN and the
one described in Section 4.2.1.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Dover Publications (1964).

[2] N. Ailon, B. Chazelle, The Fast Johnson–Lindenstrauss Transform and Approxi-
mate Nearest Neighbors, SIAM J. Comput., 39(1):302-322, 2009.

[3] N. Ailon, B. Chazelle, Faster Dimension Reduction, Commun. ACM, 53(2):97-104,
2010.

[4] N. Ailon, E. Liberty, Almost Optimal Unrestricted Fast Johnson-Lindenstrauss
Transform, eprint arXiv:1005.5513, 2010.

[5] Arya, S., D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, An
Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,
Journal of the ACM, vol. 45, no. 6, pp. 891-923 (1998).

[6] P. Billingsley, Probability and Measure, Wiley, NY (1986).

[7] W. Feller, An Introduction to Probability Theory and Its Applications, Volume II,
Second edition, Wiley, NY (1957).

[8] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Second
edition, Oxford University Press (1992).

[9] A. Andoni, P. Indyk Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions, Communications of the ACM, vol. 51, no. 1, 2008, p.
117-122.

[10] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert
space, Contemporary Mathematics, 26:189206, 1984.

[11] I. Katznelson, An Introduction to Harmonic Analysis, Second edition, Dover Publi-
cations (1976).

[12] D. Knuth, Seminumerical Algorithms, vol. 2 of The Art of Computer Programming,
Reading, Mass: Addison-Wesley (1969).

62

[13] Vladimir Rokhlin and Mark Tygert, A fast randomized algorithm for overdeter-
mined linear least-squares regression, Proceedings of the National Academy of Sciences
USA, 105 (36): 13212-13217, 2008.

[14] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin,

Mark Tygert, Randomized algorithms for the low-rank approximation of matrices,
Proceedings of the National Academy of Sciences USA 104 : 20167 20172, 2007.

[15] W. Rudin, Functional Analysis, Mc-Graw Hill (1973).

[16] W. Rudin, Real and Complex Analysis, Mc-Graw Hill (1970).

63

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

d

di
st

an
ce

2 /
d

Dtrue vs. Dsusp

Dtrue / d

Dsusp / d

(a) Square of the distances to true nearest neighbors and suspects.

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

d

D
su

sp
 /

D
tr

ue

Ratio of Dsusp to Dtrue

(b) Ratio of the average square of the distances, suspects vs. true nearest neighbors.

Figure 2: Suspects vs. true nearest neighbors (see Section 5.1.4). Number of points:
N = 30 · 2d, where d is the dimensionality. Number of requested nearest neighbors: k = 30.
See also Tables 4, 8.

64

0 20 40 60 80 100
0

0.5

1

1.5

d

di
st

an
ce

2 /
d

Dtrue / d

L=10

L=15

L=20

L=25

(a) Square of the distance to true nearest neighbors.

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

1.6

d

di
st

an
ce

2 /
d

Dsusp / d

L=10

L=15

L=20

L=25

(b) Square of the distance to suspects.

Figure 3: Distances to suspects and true nearest neighbors (see Section 5.1.4). Number of
points: N = 30 · 2L, i.e. L = log2 (N/30). Dimensionality: d. Number of requested nearest
neighbors: k = 30. See also Tables 2, 6.

65

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

d

D
su

sp
 /

D
tr

ue
Ratio of Dsusp to Dtrue

L=10

L=15

L=20

L=25

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

d

pr
op

or
tio

n

suspects among true nearest neighbors

L=10

L=15

L=20

L=25

(b) Proportion of suspects among true nearest neighbors.

Figure 4: Statistics of the suspects (see Section 5.1.4). Number of points: N = 30 · 2L, i.e.
L = log2 (N/30). Dimensionality: d. Number of requested nearest neighbors: k = 30. See
also Tables 2, 6.

66

d L contact = 0 contact ≤ 1 contact ≤ 2

4 4 0.39707E+00 0.83841E+00 0.96819E+00
5 5 0.31606E+00 0.76002E+00 0.94832E+00
6 6 0.25239E+00 0.68028E+00 0.91829E+00
7 7 0.20182E+00 0.60257E+00 0.87922E+00
8 8 0.16169E+00 0.52937E+00 0.83286E+00
9 9 0.12968E+00 0.46188E+00 0.78127E+00
10 10 0.10428E+00 0.40113E+00 0.72680E+00
11 11 0.83833E-01 0.34627E+00 0.67008E+00
12 12 0.67415E-01 0.29767E+00 0.61341E+00
13 13 0.54180E-01 0.25470E+00 0.55745E+00
14 14 0.43616E-01 0.21745E+00 0.50388E+00
15 15 0.35173E-01 0.18525E+00 0.45313E+00
16 16 0.28403E-01 0.15754E+00 0.40564E+00
17 17 0.22867E-01 0.13331E+00 0.36088E+00
18 18 0.18419E-01 0.11261E+00 0.31984E+00
19 19 0.14873E-01 0.95102E-01 0.28260E+00
20 20 0.12000E-01 0.80107E-01 0.24868E+00
25 25 0.41318E-02 0.33351E-01 0.12582E+00
30 30 0.14250E-02 0.13489E-01 0.60007E-01
35 35 0.49412E-03 0.53638E-02 0.27496E-01
40 40 0.17248E-03 0.21099E-02 0.12242E-01
45 45 0.59931E-04 0.81603E-03 0.52915E-02
50 50 0.20958E-04 0.31419E-03 0.22509E-02
55 55 0.72935E-05 0.11943E-03 0.93752E-03
60 60 0.25508E-05 0.45272E-04 0.38613E-03
65 65 0.89258E-06 0.17071E-04 0.15728E-03
70 70 0.31314E-06 0.64161E-05 0.63468E-04
75 75 0.10943E-06 0.23932E-05 0.25316E-04
80 80 0.38426E-07 0.89305E-06 0.10056E-04
85 85 0.13456E-07 0.33126E-06 0.39567E-05
90 90 0.46833E-08 0.12178E-06 0.15389E-05
95 95 0.16605E-08 0.45417E-07 0.60439E-06
100 100 0.58117E-09 0.16693E-07 0.23357E-06

Table 18: Proportion of suspects among true nearest neighbors for different variations
of RANN (see Section 5.1.4). Number of points: N = 30 · 2d = 30 · 2L, where d is the
dimensionality. Number of requested nearest neighbors: k = 30. The last three columns
correspond to different ways to select suspects of a point on an iteration of RANN (see
Section 4.2.1). Suspects are selected from the same box (third column), from d + 1 boxes
with degree of contact up to one (fourth column), from d2/2 + d/2 + 1 boxes with degree
of contact up to two (fifth column). Corresponds to Figure 5.

67

20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

d

pr
op

or
tio

n

suspects among true nearest neighbors

contact = 0

contact ≤ 1

contact ≤ 2

Figure 5: Proportion of suspects among true nearest neighbors for different variations of
RANN (see Section 5.1.4). Number of points: N = 30 · 2d, where d is the dimensionality.
Number of requested nearest neighbors: k = 30. The three curves correspond to different
ways to select suspects of a point on an iteration of RANN (see Section 4.2.1). Suspects
are selected from the same box (triangles), d + 1 boxes with degree of contact up to one
(asterisks), d2/2+d/2+1 boxes with degree of contact up to two (diamonds). See Table 18.

68

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.13353E+01 0.10149E+01 0.12074E+01 0.10044E+01
20 0.13640E+01 0.10344E+01 0.12336E+01 0.10138E+01
25 0.13617E+01 0.10516E+01 0.12386E+01 0.10246E+01
30 0.13579E+01 0.10655E+01 0.12404E+01 0.10353E+01
35 0.13428E+01 0.10738E+01 0.12349E+01 0.10435E+01
40 0.13309E+01 0.10805E+01 0.12295E+01 0.10501E+01
45 0.13201E+01 0.10855E+01 0.12257E+01 0.10556E+01
50 0.13071E+01 0.10883E+01 0.12180E+01 0.10594E+01
55 0.12984E+01 0.10902E+01 0.12136E+01 0.10624E+01
60 0.12896E+01 0.10912E+01 0.12069E+01 0.10642E+01
65 0.12790E+01 0.10924E+01 0.12015E+01 0.10658E+01
70 0.12710E+01 0.10926E+01 0.11967E+01 0.10668E+01
75 0.12634E+01 0.10920E+01 0.11918E+01 0.10670E+01
80 0.12559E+01 0.10921E+01 0.11869E+01 0.10679E+01
85 0.12503E+01 0.10918E+01 0.11835E+01 0.10680E+01
90 0.12465E+01 0.10915E+01 0.11816E+01 0.10685E+01
95 0.12378E+01 0.10908E+01 0.11752E+01 0.10686E+01
100 0.12336E+01 0.10901E+01 0.11725E+01 0.10687E+01
110 0.12233E+01 0.10890E+01 0.11665E+01 0.10681E+01
120 0.12158E+01 0.10872E+01 0.11610E+01 0.10673E+01
130 0.12060E+01 0.10856E+01 0.11540E+01 0.10666E+01
140 0.12019E+01 0.10846E+01 0.11514E+01 0.10660E+01
150 0.11956E+01 0.10833E+01 0.11472E+01 0.10656E+01
160 0.11884E+01 0.10813E+01 0.11419E+01 0.10640E+01
170 0.11825E+01 0.10799E+01 0.11376E+01 0.10630E+01
180 0.11819E+01 0.10805E+01 0.11381E+01 0.10639E+01
190 0.11738E+01 0.10770E+01 0.11316E+01 0.10611E+01
200 0.11725E+01 0.10781E+01 0.11313E+01 0.10623E+01

Table 19: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Normal distribution, number of requested nearest neighbors: k = 15, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 6(a).

69

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.19584E+00 0.85949E+00 0.35073E+00 0.94827E+00
20 0.11812E+00 0.69748E+00 0.24260E+00 0.84541E+00
25 0.83533E-01 0.56327E+00 0.18616E+00 0.73115E+00
30 0.59866E-01 0.46200E+00 0.14638E+00 0.62908E+00
35 0.49133E-01 0.39225E+00 0.12353E+00 0.54678E+00
40 0.40066E-01 0.33843E+00 0.10472E+00 0.48118E+00
45 0.34799E-01 0.29185E+00 0.89093E-01 0.42382E+00
50 0.30333E-01 0.26293E+00 0.81440E-01 0.38430E+00
55 0.26186E-01 0.23582E+00 0.71559E-01 0.34853E+00
60 0.22360E-01 0.21615E+00 0.65813E-01 0.32086E+00
65 0.20720E-01 0.19719E+00 0.62333E-01 0.29700E+00
70 0.21173E-01 0.18346E+00 0.59292E-01 0.27857E+00
75 0.19026E-01 0.17113E+00 0.53986E-01 0.26147E+00
80 0.17946E-01 0.15935E+00 0.51159E-01 0.24525E+00
85 0.16346E-01 0.15135E+00 0.48399E-01 0.23414E+00
90 0.16346E-01 0.14660E+00 0.45799E-01 0.22597E+00
95 0.14813E-01 0.13374E+00 0.45200E-01 0.20868E+00
100 0.14866E-01 0.12980E+00 0.43453E-01 0.20171E+00
110 0.11746E-01 0.11934E+00 0.37506E-01 0.18730E+00
120 0.12066E-01 0.11392E+00 0.36106E-01 0.17990E+00
130 0.11000E-01 0.10250E+00 0.34146E-01 0.16421E+00
140 0.10493E-01 0.10093E+00 0.32853E-01 0.15930E+00
150 0.92799E-02 0.92973E-01 0.29879E-01 0.14907E+00
160 0.91333E-02 0.87453E-01 0.30413E-01 0.14243E+00
170 0.89599E-02 0.81959E-01 0.28520E-01 0.13538E+00
180 0.91199E-02 0.84386E-01 0.28719E-01 0.13603E+00
190 0.78266E-02 0.77360E-01 0.25759E-01 0.12801E+00
200 0.77333E-02 0.76119E-01 0.26453E-01 0.12505E+00

Table 20: Proportion of suspects among true nearest neighbors. Normal distribution, num-
ber of requested nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 6(b).

70

50 100 150 200
1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Normal, k = 15

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 19).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Normal, k = 15

(b) Proportion of suspects among true nearest neighbors (see Table 20).

Figure 6: Normal distribution, number of requested nearest neighbors: k = 15, number of
points: N = 30 ·212, dimensionality: d (see Section 5.2.1). RANN parameters: one iteration
without supercharging (circles), one iteration with supercharging (triangles), ten iterations
without supercharging (squares), ten iterations with supercharging (plus signs).

71

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.13167E+01 0.10120E+01 0.11813E+01 0.10010E+01
20 0.13384E+01 0.10274E+01 0.11987E+01 0.10043E+01
25 0.13368E+01 0.10412E+01 0.12029E+01 0.10091E+01
30 0.13285E+01 0.10525E+01 0.12013E+01 0.10145E+01
35 0.13171E+01 0.10600E+01 0.11970E+01 0.10193E+01
40 0.13055E+01 0.10658E+01 0.11929E+01 0.10237E+01
45 0.12941E+01 0.10695E+01 0.11883E+01 0.10273E+01
50 0.12852E+01 0.10725E+01 0.11827E+01 0.10302E+01
55 0.12739E+01 0.10732E+01 0.11790E+01 0.10322E+01
60 0.12673E+01 0.10751E+01 0.11751E+01 0.10341E+01
65 0.12564E+01 0.10764E+01 0.11687E+01 0.10362E+01
70 0.12513E+01 0.10763E+01 0.11665E+01 0.10372E+01
75 0.12422E+01 0.10763E+01 0.11601E+01 0.10377E+01
80 0.12363E+01 0.10763E+01 0.11583E+01 0.10388E+01
85 0.12300E+01 0.10762E+01 0.11544E+01 0.10393E+01
90 0.12260E+01 0.10763E+01 0.11512E+01 0.10400E+01
95 0.12187E+01 0.10752E+01 0.11473E+01 0.10400E+01
100 0.12142E+01 0.10748E+01 0.11442E+01 0.10405E+01
110 0.12059E+01 0.10739E+01 0.11394E+01 0.10407E+01
120 0.11990E+01 0.10735E+01 0.11353E+01 0.10411E+01
130 0.11901E+01 0.10716E+01 0.11291E+01 0.10406E+01
140 0.11859E+01 0.10710E+01 0.11270E+01 0.10409E+01
150 0.11801E+01 0.10701E+01 0.11229E+01 0.10405E+01
160 0.11735E+01 0.10681E+01 0.11194E+01 0.10397E+01
170 0.11687E+01 0.10673E+01 0.11168E+01 0.10394E+01
180 0.11671E+01 0.10673E+01 0.11158E+01 0.10402E+01
190 0.11598E+01 0.10652E+01 0.11108E+01 0.10391E+01
200 0.11581E+01 0.10653E+01 0.11099E+01 0.10393E+01

Table 21: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Normal distribution, number of requested nearest neighbors: k = 30, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 7(a).

72

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.21207E+00 0.88223E+00 0.39881E+00 0.98602E+00
20 0.13572E+00 0.74548E+00 0.30262E+00 0.94152E+00
25 0.99866E-01 0.62679E+00 0.24563E+00 0.87733E+00
30 0.75826E-01 0.53078E+00 0.20073E+00 0.80652E+00
35 0.62139E-01 0.45932E+00 0.17439E+00 0.73955E+00
40 0.51720E-01 0.40445E+00 0.15264E+00 0.68105E+00
45 0.46233E-01 0.36437E+00 0.13835E+00 0.63105E+00
50 0.39392E-01 0.32730E+00 0.12529E+00 0.58726E+00
55 0.35660E-01 0.30319E+00 0.11382E+00 0.55093E+00
60 0.32226E-01 0.27981E+00 0.10607E+00 0.52110E+00
65 0.30220E-01 0.25810E+00 0.99299E-01 0.48709E+00
70 0.27379E-01 0.24348E+00 0.93126E-01 0.46652E+00
75 0.26160E-01 0.22987E+00 0.89233E-01 0.44777E+00
80 0.24493E-01 0.21738E+00 0.83666E-01 0.42635E+00
85 0.22413E-01 0.20694E+00 0.80293E-01 0.41077E+00
90 0.22299E-01 0.19819E+00 0.77673E-01 0.39710E+00
95 0.20760E-01 0.19105E+00 0.73840E-01 0.38317E+00
100 0.20493E-01 0.18318E+00 0.74219E-01 0.37023E+00
110 0.18493E-01 0.16979E+00 0.68326E-01 0.35069E+00
120 0.17386E-01 0.15835E+00 0.63746E-01 0.33120E+00
130 0.16380E-01 0.14855E+00 0.61486E-01 0.31542E+00
140 0.15733E-01 0.14369E+00 0.58340E-01 0.30502E+00
150 0.14306E-01 0.13722E+00 0.55967E-01 0.29556E+00
160 0.13313E-01 0.13012E+00 0.53113E-01 0.28406E+00
170 0.13526E-01 0.12600E+00 0.52213E-01 0.27732E+00
180 0.13019E-01 0.12455E+00 0.50486E-01 0.27049E+00
190 0.12273E-01 0.11570E+00 0.48353E-01 0.25746E+00
200 0.12186E-01 0.11517E+00 0.47920E-01 0.25544E+00

Table 22: Proportion of suspects among true nearest neighbors. Normal distribution, num-
ber of requested nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 7(b).

73

50 100 150 200
1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Normal, k = 30

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 21).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Normal, k = 30

(b) Proportion of suspects among true nearest neighbors (see Table 22).

Figure 7: Normal distribution, number of requested nearest neighbors: k = 30, number of
points: N = 30 ·212, dimensionality: d (see Section 5.2.1). RANN parameters: one iteration
without supercharging (circles), one iteration with supercharging (triangles), ten iterations
without supercharging (squares), ten iterations with supercharging (plus signs).

74

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.12981E+01 0.10094E+01 0.11696E+01 0.10001E+01
20 0.13169E+01 0.10215E+01 0.11800E+01 0.10007E+01
25 0.13126E+01 0.10324E+01 0.11792E+01 0.10018E+01
30 0.13029E+01 0.10409E+01 0.11775E+01 0.10033E+01
35 0.12919E+01 0.10469E+01 0.11735E+01 0.10051E+01
40 0.12799E+01 0.10519E+01 0.11671E+01 0.10067E+01
45 0.12700E+01 0.10547E+01 0.11639E+01 0.10083E+01
50 0.12608E+01 0.10572E+01 0.11586E+01 0.10096E+01
55 0.12506E+01 0.10587E+01 0.11539E+01 0.10110E+01
60 0.12436E+01 0.10600E+01 0.11503E+01 0.10120E+01
65 0.12363E+01 0.10606E+01 0.11459E+01 0.10131E+01
70 0.12291E+01 0.10610E+01 0.11425E+01 0.10138E+01
75 0.12225E+01 0.10612E+01 0.11392E+01 0.10144E+01
80 0.12157E+01 0.10612E+01 0.11352E+01 0.10151E+01
85 0.12107E+01 0.10614E+01 0.11318E+01 0.10157E+01
90 0.12070E+01 0.10614E+01 0.11306E+01 0.10161E+01
95 0.12010E+01 0.10611E+01 0.11268E+01 0.10164E+01
100 0.11965E+01 0.10606E+01 0.11244E+01 0.10169E+01
110 0.11887E+01 0.10599E+01 0.11202E+01 0.10173E+01
120 0.11819E+01 0.10592E+01 0.11157E+01 0.10175E+01
130 0.11748E+01 0.10582E+01 0.11120E+01 0.10178E+01
140 0.11708E+01 0.10578E+01 0.11096E+01 0.10180E+01
150 0.11646E+01 0.10568E+01 0.11062E+01 0.10181E+01
160 0.11591E+01 0.10561E+01 0.11032E+01 0.10180E+01
170 0.11547E+01 0.10551E+01 0.11003E+01 0.10181E+01
180 0.11527E+01 0.10550E+01 0.10990E+01 0.10185E+01
190 0.11463E+01 0.10534E+01 0.10951E+01 0.10180E+01
200 0.11448E+01 0.10534E+01 0.10946E+01 0.10186E+01

Table 23: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Normal distribution, number of requested nearest neighbors: k = 60, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 8(a).

75

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.22758E+00 0.90334E+00 0.42380E+00 0.99811E+00
20 0.15253E+00 0.78899E+00 0.34026E+00 0.98915E+00
25 0.11478E+00 0.68696E+00 0.28945E+00 0.97053E+00
30 0.90873E-01 0.60182E+00 0.24896E+00 0.94376E+00
35 0.76743E-01 0.53831E+00 0.21954E+00 0.91241E+00
40 0.66706E-01 0.48444E+00 0.20054E+00 0.88148E+00
45 0.58966E-01 0.44632E+00 0.18305E+00 0.85145E+00
50 0.51569E-01 0.40913E+00 0.16767E+00 0.82218E+00
55 0.48276E-01 0.38160E+00 0.15935E+00 0.79551E+00
60 0.44100E-01 0.35694E+00 0.14939E+00 0.77118E+00
65 0.40313E-01 0.33599E+00 0.14055E+00 0.74604E+00
70 0.38836E-01 0.31993E+00 0.13582E+00 0.72637E+00
75 0.35919E-01 0.30500E+00 0.12844E+00 0.70909E+00
80 0.34723E-01 0.29134E+00 0.12450E+00 0.68957E+00
85 0.32750E-01 0.27987E+00 0.11882E+00 0.67483E+00
90 0.31580E-01 0.26983E+00 0.11702E+00 0.66010E+00
95 0.29956E-01 0.25901E+00 0.11262E+00 0.64803E+00
100 0.28756E-01 0.25217E+00 0.10932E+00 0.63346E+00
110 0.26743E-01 0.23597E+00 0.10329E+00 0.61133E+00
120 0.25573E-01 0.22566E+00 0.98653E-01 0.59596E+00
130 0.24163E-01 0.21513E+00 0.95543E-01 0.57782E+00
140 0.22403E-01 0.20524E+00 0.89829E-01 0.56545E+00
150 0.21789E-01 0.19827E+00 0.88073E-01 0.55144E+00
160 0.20639E-01 0.18906E+00 0.84066E-01 0.54110E+00
170 0.20356E-01 0.18523E+00 0.83273E-01 0.52985E+00
180 0.19756E-01 0.18071E+00 0.81179E-01 0.52127E+00
190 0.19016E-01 0.17383E+00 0.79460E-01 0.51086E+00
200 0.18303E-01 0.17101E+00 0.77273E-01 0.50253E+00

Table 24: Proportion of suspects among true nearest neighbors. Normal distribution, num-
ber of requested nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 8(b).

76

50 100 150 200
1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Normal, k = 60

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 23).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Normal, k = 60

(b) Proportion of suspects among true nearest neighbors (see Table 24).

Figure 8: Normal distribution, number of requested nearest neighbors: k = 60, number of
points: N = 30 ·212, dimensionality: d (see Section 5.2.1). RANN parameters: one iteration
without supercharging (circles), one iteration with supercharging (triangles), ten iterations
without supercharging (squares), ten iterations with supercharging (plus signs).

77

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.13602E+01 0.10124E+01 0.12187E+01 0.10028E+01
20 0.13842E+01 0.10301E+01 0.12435E+01 0.10108E+01
25 0.13753E+01 0.10469E+01 0.12489E+01 0.10213E+01
30 0.13652E+01 0.10603E+01 0.12498E+01 0.10326E+01
35 0.13493E+01 0.10697E+01 0.12454E+01 0.10419E+01
40 0.13319E+01 0.10767E+01 0.12381E+01 0.10498E+01
45 0.13181E+01 0.10811E+01 0.12314E+01 0.10557E+01
50 0.13049E+01 0.10838E+01 0.12243E+01 0.10596E+01
55 0.12919E+01 0.10845E+01 0.12174E+01 0.10619E+01
60 0.12803E+01 0.10863E+01 0.12107E+01 0.10649E+01
65 0.12709E+01 0.10867E+01 0.12055E+01 0.10667E+01
70 0.12625E+01 0.10861E+01 0.11998E+01 0.10672E+01
75 0.12534E+01 0.10868E+01 0.11944E+01 0.10690E+01
80 0.12451E+01 0.10856E+01 0.11888E+01 0.10688E+01
85 0.12393E+01 0.10859E+01 0.11842E+01 0.10698E+01
90 0.12328E+01 0.10850E+01 0.11804E+01 0.10694E+01
95 0.12270E+01 0.10847E+01 0.11766E+01 0.10698E+01
100 0.12207E+01 0.10843E+01 0.11729E+01 0.10696E+01
110 0.12110E+01 0.10821E+01 0.11660E+01 0.10690E+01
120 0.12018E+01 0.10807E+01 0.11594E+01 0.10683E+01
130 0.11938E+01 0.10791E+01 0.11538E+01 0.10671E+01
140 0.11871E+01 0.10778E+01 0.11484E+01 0.10666E+01
150 0.11818E+01 0.10762E+01 0.11444E+01 0.10655E+01
160 0.11754E+01 0.10749E+01 0.11402E+01 0.10647E+01
170 0.11701E+01 0.10731E+01 0.11362E+01 0.10633E+01
180 0.11658E+01 0.10722E+01 0.11327E+01 0.10626E+01
190 0.11606E+01 0.10712E+01 0.11290E+01 0.10622E+01
200 0.11572E+01 0.10696E+01 0.11266E+01 0.10607E+01

Table 25: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Uniform distribution, number of requested nearest neighbors: k = 15, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 9(a).

78

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.21963E+00 0.89414E+00 0.37941E+00 0.96709E+00
20 0.13565E+00 0.74886E+00 0.27003E+00 0.88190E+00
25 0.97599E-01 0.61809E+00 0.20494E+00 0.77673E+00
30 0.71559E-01 0.51005E+00 0.15846E+00 0.66602E+00
35 0.55946E-01 0.43366E+00 0.13094E+00 0.57608E+00
40 0.45493E-01 0.37094E+00 0.10938E+00 0.49994E+00
45 0.38906E-01 0.32725E+00 0.94173E-01 0.44222E+00
50 0.34440E-01 0.29112E+00 0.83240E-01 0.39622E+00
55 0.29853E-01 0.26456E+00 0.73586E-01 0.35941E+00
60 0.27973E-01 0.23967E+00 0.68933E-01 0.32804E+00
65 0.24079E-01 0.21942E+00 0.60186E-01 0.29796E+00
70 0.22786E-01 0.20441E+00 0.57986E-01 0.27711E+00
75 0.20960E-01 0.19267E+00 0.52519E-01 0.25913E+00
80 0.20146E-01 0.17982E+00 0.50186E-01 0.24239E+00
85 0.18466E-01 0.16908E+00 0.47040E-01 0.22773E+00
90 0.16613E-01 0.15963E+00 0.43466E-01 0.21641E+00
95 0.16506E-01 0.15030E+00 0.42613E-01 0.20277E+00
100 0.15879E-01 0.14337E+00 0.39400E-01 0.19478E+00
110 0.13493E-01 0.13502E+00 0.36680E-01 0.18042E+00
120 0.12666E-01 0.12188E+00 0.33639E-01 0.16409E+00
130 0.12653E-01 0.11618E+00 0.31880E-01 0.15666E+00
140 0.11173E-01 0.10767E+00 0.29653E-01 0.14393E+00
150 0.10706E-01 0.99626E-01 0.30026E-01 0.13485E+00
160 0.10466E-01 0.98134E-01 0.26626E-01 0.13199E+00
170 0.94801E-02 0.94093E-01 0.25986E-01 0.12681E+00
180 0.92400E-02 0.89493E-01 0.24839E-01 0.12099E+00
190 0.88133E-02 0.85053E-01 0.23839E-01 0.11330E+00
200 0.88266E-02 0.84306E-01 0.22853E-01 0.11266E+00

Table 26: Proportion of suspects among true nearest neighbors. Uniform distribution, num-
ber of requested nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 9(b).

79

50 100 150 200

1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Uniform, k = 15

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 25).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Uniform, k = 15

(b) Proportion of suspects among true nearest neighbors (see Table 26).

Figure 9: Uniform distribution, number of requested nearest neighbors: k = 15, number of
points: N = 30 ·212, dimensionality: d (see Section 5.2.1). RANN parameters: one iteration
without supercharging (circles), one iteration with supercharging (triangles), ten iterations
without supercharging (squares), ten iterations with supercharging (plus signs).

80

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.13401E+01 0.10097E+01 0.11927E+01 0.10005E+01
20 0.13536E+01 0.10236E+01 0.12058E+01 0.10027E+01
25 0.13482E+01 0.10369E+01 0.12106E+01 0.10070E+01
30 0.13342E+01 0.10483E+01 0.12075E+01 0.10129E+01
35 0.13203E+01 0.10557E+01 0.12019E+01 0.10186E+01
40 0.13064E+01 0.10609E+01 0.11968E+01 0.10237E+01
45 0.12917E+01 0.10649E+01 0.11895E+01 0.10278E+01
50 0.12775E+01 0.10676E+01 0.11836E+01 0.10318E+01
55 0.12670E+01 0.10690E+01 0.11798E+01 0.10346E+01
60 0.12569E+01 0.10700E+01 0.11731E+01 0.10367E+01
65 0.12480E+01 0.10709E+01 0.11686E+01 0.10391E+01
70 0.12400E+01 0.10710E+01 0.11645E+01 0.10402E+01
75 0.12325E+01 0.10713E+01 0.11605E+01 0.10416E+01
80 0.12259E+01 0.10707E+01 0.11561E+01 0.10426E+01
85 0.12191E+01 0.10710E+01 0.11523E+01 0.10435E+01
90 0.12135E+01 0.10701E+01 0.11482E+01 0.10438E+01
95 0.12079E+01 0.10699E+01 0.11458E+01 0.10444E+01
100 0.12026E+01 0.10693E+01 0.11428E+01 0.10447E+01
110 0.11940E+01 0.10683E+01 0.11374E+01 0.10450E+01
120 0.11858E+01 0.10672E+01 0.11324E+01 0.10452E+01
130 0.11782E+01 0.10659E+01 0.11271E+01 0.10450E+01
140 0.11722E+01 0.10648E+01 0.11230E+01 0.10448E+01
150 0.11668E+01 0.10639E+01 0.11201E+01 0.10446E+01
160 0.11615E+01 0.10627E+01 0.11165E+01 0.10442E+01
170 0.11561E+01 0.10616E+01 0.11134E+01 0.10439E+01
180 0.11524E+01 0.10606E+01 0.11104E+01 0.10434E+01
190 0.11489E+01 0.10596E+01 0.11081E+01 0.10430E+01
200 0.11448E+01 0.10588E+01 0.11052E+01 0.10428E+01

Table 27: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Uniform distribution, number of requested nearest neighbors: k = 30, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 10(a).

81

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.23690E+00 0.91333E+00 0.42590E+00 0.99279E+00
20 0.15378E+00 0.79290E+00 0.32813E+00 0.96187E+00
25 0.11056E+00 0.67475E+00 0.26108E+00 0.90432E+00
30 0.85353E-01 0.57711E+00 0.21781E+00 0.83060E+00
35 0.68333E-01 0.50411E+00 0.18499E+00 0.75760E+00
40 0.57880E-01 0.44746E+00 0.15946E+00 0.69308E+00
45 0.49519E-01 0.40067E+00 0.14476E+00 0.63650E+00
50 0.44033E-01 0.36029E+00 0.13145E+00 0.58142E+00
55 0.40193E-01 0.33279E+00 0.12034E+00 0.53988E+00
60 0.36966E-01 0.30664E+00 0.11026E+00 0.50455E+00
65 0.33259E-01 0.28517E+00 0.10120E+00 0.47082E+00
70 0.30686E-01 0.26895E+00 0.94840E-01 0.44663E+00
75 0.29033E-01 0.25210E+00 0.90633E-01 0.42028E+00
80 0.26986E-01 0.24226E+00 0.86779E-01 0.39861E+00
85 0.25626E-01 0.22633E+00 0.81373E-01 0.37768E+00
90 0.24239E-01 0.21757E+00 0.78013E-01 0.36253E+00
95 0.22813E-01 0.20719E+00 0.73959E-01 0.34872E+00
100 0.22526E-01 0.20111E+00 0.72113E-01 0.33530E+00
110 0.20273E-01 0.18559E+00 0.67133E-01 0.31113E+00
120 0.18133E-01 0.17407E+00 0.61713E-01 0.29200E+00
130 0.17699E-01 0.16452E+00 0.59213E-01 0.27673E+00
140 0.16713E-01 0.15552E+00 0.56500E-01 0.26214E+00
150 0.15419E-01 0.14864E+00 0.53773E-01 0.25161E+00
160 0.15113E-01 0.14161E+00 0.51819E-01 0.24060E+00
170 0.14780E-01 0.13646E+00 0.50253E-01 0.23069E+00
180 0.13420E-01 0.13090E+00 0.47413E-01 0.22143E+00
190 0.13340E-01 0.12743E+00 0.46973E-01 0.21650E+00
200 0.12726E-01 0.12278E+00 0.45366E-01 0.20793E+00

Table 28: Proportion of suspects among true nearest neighbors. Uniform distribution, num-
ber of requested nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 10(b).

82

50 100 150 200

1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Uniform, k = 30

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 27).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Uniform, k = 30

(b) Proportion of suspects among true nearest neighbors (see Table 28).

Figure 10: Uniform distribution, number of requested nearest neighbors: k = 30, number
of points: N = 30 · 212, dimensionality: d (see Section 5.2.1). RANN parameters: one
iteration without supercharging (circles), one iteration with supercharging (triangles), ten
iterations without supercharging (squares), ten iterations with supercharging (plus signs).

83

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.13160E+01 0.10076E+01 0.11785E+01 0.10000E+01
20 0.13331E+01 0.10182E+01 0.11892E+01 0.10002E+01
25 0.13208E+01 0.10287E+01 0.11847E+01 0.10011E+01
30 0.13059E+01 0.10371E+01 0.11800E+01 0.10026E+01
35 0.12914E+01 0.10432E+01 0.11740E+01 0.10045E+01
40 0.12772E+01 0.10479E+01 0.11667E+01 0.10066E+01
45 0.12649E+01 0.10507E+01 0.11607E+01 0.10087E+01
50 0.12541E+01 0.10528E+01 0.11561E+01 0.10107E+01
55 0.12440E+01 0.10541E+01 0.11503E+01 0.10123E+01
60 0.12347E+01 0.10554E+01 0.11469E+01 0.10139E+01
65 0.12270E+01 0.10562E+01 0.11422E+01 0.10154E+01
70 0.12196E+01 0.10562E+01 0.11389E+01 0.10165E+01
75 0.12119E+01 0.10563E+01 0.11340E+01 0.10174E+01
80 0.12062E+01 0.10567E+01 0.11317E+01 0.10184E+01
85 0.11998E+01 0.10564E+01 0.11274E+01 0.10191E+01
90 0.11951E+01 0.10560E+01 0.11254E+01 0.10198E+01
95 0.11895E+01 0.10557E+01 0.11218E+01 0.10203E+01
100 0.11851E+01 0.10557E+01 0.11197E+01 0.10208E+01
110 0.11772E+01 0.10551E+01 0.11157E+01 0.10218E+01
120 0.11703E+01 0.10543E+01 0.11109E+01 0.10224E+01
130 0.11634E+01 0.10536E+01 0.11065E+01 0.10229E+01
140 0.11580E+01 0.10525E+01 0.11038E+01 0.10230E+01
150 0.11524E+01 0.10517E+01 0.11006E+01 0.10232E+01
160 0.11475E+01 0.10510E+01 0.10977E+01 0.10235E+01
170 0.11434E+01 0.10500E+01 0.10949E+01 0.10234E+01
180 0.11397E+01 0.10495E+01 0.10929E+01 0.10236E+01
190 0.11358E+01 0.10487E+01 0.10902E+01 0.10234E+01
200 0.11325E+01 0.10480E+01 0.10882E+01 0.10234E+01

Table 29: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Uniform distribution, number of requested nearest neighbors: k = 60, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 11(a).

84

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.25819E+00 0.92979E+00 0.45220E+00 0.99947E+00
20 0.16887E+00 0.83097E+00 0.36171E+00 0.99480E+00
25 0.12723E+00 0.73150E+00 0.30682E+00 0.98069E+00
30 0.10191E+00 0.64583E+00 0.26578E+00 0.95461E+00
35 0.85336E-01 0.57826E+00 0.23609E+00 0.92177E+00
40 0.73763E-01 0.52273E+00 0.21400E+00 0.88508E+00
45 0.64303E-01 0.47955E+00 0.19548E+00 0.84626E+00
50 0.58053E-01 0.44352E+00 0.18057E+00 0.81030E+00
55 0.53079E-01 0.41421E+00 0.16940E+00 0.77684E+00
60 0.48990E-01 0.38665E+00 0.15856E+00 0.74563E+00
65 0.45273E-01 0.36475E+00 0.14861E+00 0.71492E+00
70 0.41559E-01 0.34761E+00 0.14003E+00 0.68969E+00
75 0.39233E-01 0.33180E+00 0.13544E+00 0.66775E+00
80 0.37740E-01 0.31489E+00 0.12955E+00 0.64468E+00
85 0.35990E-01 0.30380E+00 0.12564E+00 0.62537E+00
90 0.34303E-01 0.29489E+00 0.12068E+00 0.60735E+00
95 0.32863E-01 0.28356E+00 0.11678E+00 0.58932E+00
100 0.31479E-01 0.27354E+00 0.11231E+00 0.57407E+00
110 0.29426E-01 0.25551E+00 0.10658E+00 0.54354E+00
120 0.27379E-01 0.24263E+00 0.10167E+00 0.52032E+00
130 0.25893E-01 0.23042E+00 0.97183E-01 0.49840E+00
140 0.24513E-01 0.22274E+00 0.92709E-01 0.48290E+00
150 0.23633E-01 0.21422E+00 0.90410E-01 0.46770E+00
160 0.22929E-01 0.20533E+00 0.86999E-01 0.44988E+00
170 0.21736E-01 0.19974E+00 0.83633E-01 0.43889E+00
180 0.20916E-01 0.19290E+00 0.81413E-01 0.42714E+00
190 0.20360E-01 0.18676E+00 0.80956E-01 0.41630E+00
200 0.20186E-01 0.18259E+00 0.78506E-01 0.40811E+00

Table 30: Proportion of suspects among true nearest neighbors. Uniform distribution, num-
ber of requested nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality:
d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 11(b).

85

50 100 150 200

1

1.1

1.2

1.3

d

D
su

sp
 /

D
tr

ue
Uniform, k = 60

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 29).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Uniform, k = 60

(b) Proportion of suspects among true nearest neighbors (see Table 30).

Figure 11: Uniform distribution, number of requested nearest neighbors: k = 60, number
of points: N = 30 · 212, dimensionality: d (see Section 5.2.1). RANN parameters: one
iteration without supercharging (circles), one iteration with supercharging (triangles), ten
iterations without supercharging (squares), ten iterations with supercharging (plus signs).

86

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.12272E+01 0.10000E+01 0.11573E+01 0.10000E+01
20 0.15018E+01 0.10046E+01 0.13130E+01 0.10006E+01
25 0.14356E+01 0.10363E+01 0.12776E+01 0.10149E+01
30 0.14286E+01 0.10569E+01 0.12937E+01 0.10254E+01
35 0.13729E+01 0.10546E+01 0.12615E+01 0.10277E+01
40 0.13536E+01 0.10683E+01 0.12573E+01 0.10442E+01
45 0.13375E+01 0.10784E+01 0.12528E+01 0.10558E+01
50 0.13160E+01 0.10812E+01 0.12403E+01 0.10602E+01
55 0.12973E+01 0.10814E+01 0.12301E+01 0.10626E+01
60 0.12817E+01 0.10814E+01 0.12196E+01 0.10641E+01
65 0.12707E+01 0.10823E+01 0.12132E+01 0.10662E+01
70 0.12611E+01 0.10829E+01 0.12071E+01 0.10682E+01
75 0.12518E+01 0.10832E+01 0.12006E+01 0.10695E+01
80 0.12424E+01 0.10817E+01 0.11945E+01 0.10695E+01
85 0.12335E+01 0.10817E+01 0.11884E+01 0.10702E+01
90 0.12269E+01 0.10812E+01 0.11844E+01 0.10703E+01
95 0.12206E+01 0.10798E+01 0.11807E+01 0.10694E+01
100 0.12140E+01 0.10791E+01 0.11757E+01 0.10693E+01
110 0.12039E+01 0.10783E+01 0.11683E+01 0.10694E+01
120 0.11939E+01 0.10762E+01 0.11615E+01 0.10682E+01
130 0.11863E+01 0.10748E+01 0.11556E+01 0.10675E+01
140 0.11790E+01 0.10736E+01 0.11494E+01 0.10669E+01
150 0.11735E+01 0.10719E+01 0.11461E+01 0.10657E+01
160 0.11669E+01 0.10702E+01 0.11409E+01 0.10644E+01
170 0.11613E+01 0.10690E+01 0.11366E+01 0.10636E+01
180 0.11568E+01 0.10677E+01 0.11332E+01 0.10625E+01
190 0.11522E+01 0.10662E+01 0.11296E+01 0.10615E+01
200 0.11484E+01 0.10652E+01 0.11269E+01 0.10605E+01

Table 31: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Hamming distribution, number of requested nearest neighbors: k = 15, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 12(a).

87

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.42762E+00 0.95102E+00 0.46187E+00 0.96768E+00
20 0.22001E+00 0.88266E+00 0.37069E+00 0.97772E+00
25 0.13504E+00 0.72813E+00 0.26162E+00 0.86738E+00
30 0.92893E-01 0.61641E+00 0.19458E+00 0.76070E+00
35 0.72440E-01 0.50552E+00 0.15573E+00 0.64512E+00
40 0.56853E-01 0.43859E+00 0.12557E+00 0.56389E+00
45 0.47306E-01 0.38378E+00 0.10618E+00 0.49428E+00
50 0.41760E-01 0.33640E+00 0.92053E-01 0.43224E+00
55 0.36893E-01 0.30325E+00 0.80999E-01 0.38524E+00
60 0.32773E-01 0.27349E+00 0.71386E-01 0.34686E+00
65 0.28826E-01 0.25217E+00 0.63399E-01 0.31674E+00
70 0.26160E-01 0.23190E+00 0.57453E-01 0.29044E+00
75 0.24546E-01 0.21157E+00 0.53813E-01 0.26524E+00
80 0.21493E-01 0.20434E+00 0.49106E-01 0.25198E+00
85 0.21133E-01 0.18975E+00 0.46053E-01 0.23351E+00
90 0.19546E-01 0.17999E+00 0.43613E-01 0.22048E+00
95 0.18093E-01 0.17170E+00 0.38986E-01 0.21141E+00
100 0.17439E-01 0.16328E+00 0.37653E-01 0.19978E+00
110 0.16466E-01 0.14950E+00 0.35906E-01 0.18053E+00
120 0.14853E-01 0.13535E+00 0.31933E-01 0.16377E+00
130 0.13799E-01 0.12784E+00 0.30213E-01 0.15315E+00
140 0.12466E-01 0.11889E+00 0.27706E-01 0.14194E+00
150 0.10960E-01 0.11229E+00 0.23973E-01 0.13329E+00
160 0.10706E-01 0.10750E+00 0.22693E-01 0.12717E+00
170 0.11000E-01 0.10217E+00 0.23359E-01 0.12042E+00
180 0.10240E-01 0.97866E-01 0.21853E-01 0.11515E+00
190 0.99733E-02 0.94533E-01 0.20933E-01 0.11018E+00
200 0.94000E-02 0.90613E-01 0.19666E-01 0.10590E+00

Table 32: Proportion of suspects among true nearest neighbors. Hamming distribution,
number of requested nearest neighbors: k = 15, number of points: N = 30 · 212, dimension-
ality: d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 12(b).

88

50 100 150 200

1

1.1

1.2

1.3

1.4

1.5

d

D
su

sp
 /

D
tr

ue
Hamming, k = 15

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 31).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Hamming, k = 15

(b) Proportion of suspects among true nearest neighbors (see Table 32).

Figure 12: Hamming distribution, number of requested nearest neighbors: k = 15, number
of points: N = 30 · 212, dimensionality: d (see Section 5.2.1). RANN parameters: one
iteration without supercharging (circles), one iteration with supercharging (triangles), ten
iterations without supercharging (squares), ten iterations with supercharging (plus signs).

89

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.14201E+01 0.10000E+01 0.12986E+01 0.10000E+01
20 0.14556E+01 0.10239E+01 0.12712E+01 0.10006E+01
25 0.13889E+01 0.10117E+01 0.12258E+01 0.10012E+01
30 0.13645E+01 0.10396E+01 0.12220E+01 0.10111E+01
35 0.13550E+01 0.10613E+01 0.12289E+01 0.10209E+01
40 0.13222E+01 0.10586E+01 0.12093E+01 0.10193E+01
45 0.12973E+01 0.10586E+01 0.11967E+01 0.10218E+01
50 0.12814E+01 0.10615E+01 0.11891E+01 0.10276E+01
55 0.12696E+01 0.10646E+01 0.11839E+01 0.10332E+01
60 0.12584E+01 0.10671E+01 0.11795E+01 0.10380E+01
65 0.12482E+01 0.10680E+01 0.11741E+01 0.10410E+01
70 0.12394E+01 0.10681E+01 0.11696E+01 0.10437E+01
75 0.12304E+01 0.10678E+01 0.11639E+01 0.10449E+01
80 0.12224E+01 0.10677E+01 0.11599E+01 0.10465E+01
85 0.12153E+01 0.10670E+01 0.11555E+01 0.10469E+01
90 0.12075E+01 0.10669E+01 0.11509E+01 0.10475E+01
95 0.12023E+01 0.10664E+01 0.11476E+01 0.10476E+01
100 0.11958E+01 0.10653E+01 0.11434E+01 0.10477E+01
110 0.11870E+01 0.10640E+01 0.11381E+01 0.10480E+01
120 0.11784E+01 0.10628E+01 0.11326E+01 0.10480E+01
130 0.11709E+01 0.10619E+01 0.11285E+01 0.10483E+01
140 0.11648E+01 0.10608E+01 0.11246E+01 0.10482E+01
150 0.11588E+01 0.10598E+01 0.11202E+01 0.10478E+01
160 0.11526E+01 0.10588E+01 0.11161E+01 0.10476E+01
170 0.11483E+01 0.10575E+01 0.11129E+01 0.10470E+01
180 0.11439E+01 0.10566E+01 0.11110E+01 0.10464E+01
190 0.11402E+01 0.10557E+01 0.11079E+01 0.10461E+01
200 0.11361E+01 0.10547E+01 0.11055E+01 0.10456E+01

Table 33: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Hamming distribution, number of requested nearest neighbors: k = 30, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 13(a).

90

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.39150E+00 0.98028E+00 0.47364E+00 0.98718E+00
20 0.23034E+00 0.89128E+00 0.40849E+00 0.99021E+00
25 0.14365E+00 0.76024E+00 0.30935E+00 0.95715E+00
30 0.10472E+00 0.65917E+00 0.24867E+00 0.88416E+00
35 0.84793E-01 0.58089E+00 0.21203E+00 0.81077E+00
40 0.69053E-01 0.50588E+00 0.18011E+00 0.72949E+00
45 0.58840E-01 0.44904E+00 0.15807E+00 0.66226E+00
50 0.51780E-01 0.40606E+00 0.14081E+00 0.60312E+00
55 0.44839E-01 0.37124E+00 0.12519E+00 0.55248E+00
60 0.41813E-01 0.34367E+00 0.11579E+00 0.51006E+00
65 0.37219E-01 0.31936E+00 0.10640E+00 0.47377E+00
70 0.35046E-01 0.29908E+00 0.98931E-01 0.43997E+00
75 0.32220E-01 0.28192E+00 0.92480E-01 0.41510E+00
80 0.30320E-01 0.26398E+00 0.85993E-01 0.38689E+00
85 0.28866E-01 0.25292E+00 0.82899E-01 0.36759E+00
90 0.27780E-01 0.23930E+00 0.78759E-01 0.34696E+00
95 0.25093E-01 0.22834E+00 0.73560E-01 0.33166E+00
100 0.24173E-01 0.21997E+00 0.71366E-01 0.31498E+00
110 0.22093E-01 0.20336E+00 0.65080E-01 0.29088E+00
120 0.21313E-01 0.19129E+00 0.60753E-01 0.27033E+00
130 0.19906E-01 0.18025E+00 0.56820E-01 0.25303E+00
140 0.18599E-01 0.17076E+00 0.53413E-01 0.23816E+00
150 0.16913E-01 0.16115E+00 0.49893E-01 0.22461E+00
160 0.16613E-01 0.15421E+00 0.47539E-01 0.21189E+00
170 0.16153E-01 0.14867E+00 0.46913E-01 0.20442E+00
180 0.14959E-01 0.14315E+00 0.43479E-01 0.19631E+00
190 0.14506E-01 0.13821E+00 0.42280E-01 0.18984E+00
200 0.14406E-01 0.13403E+00 0.40926E-01 0.18202E+00

Table 34: Proportion of suspects among true nearest neighbors. Hamming distribution,
number of requested nearest neighbors: k = 30, number of points: N = 30 · 212, dimension-
ality: d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 13(b).

91

50 100 150 200

1

1.1

1.2

1.3

1.4

1.5

d

D
su

sp
 /

D
tr

ue
Hamming, k = 30

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 33).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Hamming, k = 30

(b) Proportion of suspects among true nearest neighbors (see Table 34).

Figure 13: Hamming distribution, number of requested nearest neighbors: k = 30, number
of points: N = 30 · 212, dimensionality: d (see Section 5.2.1). RANN parameters: one
iteration without supercharging (circles), one iteration with supercharging (triangles), ten
iterations without supercharging (squares), ten iterations with supercharging (plus signs).

92

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.15732E+01 0.10048E+01 0.14259E+01 0.10015E+01
20 0.13431E+01 0.10055E+01 0.11784E+01 0.10000E+01
25 0.13820E+01 0.10374E+01 0.12244E+01 0.10006E+01
30 0.13295E+01 0.10204E+01 0.11902E+01 0.10005E+01
35 0.12996E+01 0.10268E+01 0.11757E+01 0.10027E+01
40 0.12847E+01 0.10382E+01 0.11707E+01 0.10067E+01
45 0.12723E+01 0.10466E+01 0.11663E+01 0.10115E+01
50 0.12601E+01 0.10512E+01 0.11610E+01 0.10148E+01
55 0.12482E+01 0.10523E+01 0.11556E+01 0.10163E+01
60 0.12351E+01 0.10525E+01 0.11482E+01 0.10178E+01
65 0.12261E+01 0.10530E+01 0.11439E+01 0.10192E+01
70 0.12172E+01 0.10537E+01 0.11386E+01 0.10208E+01
75 0.12087E+01 0.10542E+01 0.11349E+01 0.10221E+01
80 0.12014E+01 0.10541E+01 0.11305E+01 0.10229E+01
85 0.11962E+01 0.10538E+01 0.11280E+01 0.10236E+01
90 0.11890E+01 0.10533E+01 0.11237E+01 0.10240E+01
95 0.11839E+01 0.10525E+01 0.11210E+01 0.10246E+01
100 0.11790E+01 0.10521E+01 0.11179E+01 0.10250E+01
110 0.11695E+01 0.10513E+01 0.11129E+01 0.10260E+01
120 0.11618E+01 0.10500E+01 0.11083E+01 0.10264E+01
130 0.11562E+01 0.10501E+01 0.11051E+01 0.10279E+01
140 0.11502E+01 0.10491E+01 0.11013E+01 0.10282E+01
150 0.11444E+01 0.10480E+01 0.10976E+01 0.10280E+01
160 0.11396E+01 0.10472E+01 0.10948E+01 0.10284E+01
170 0.11359E+01 0.10468E+01 0.10928E+01 0.10287E+01
180 0.11313E+01 0.10457E+01 0.10899E+01 0.10285E+01
190 0.11280E+01 0.10452E+01 0.10874E+01 0.10286E+01
200 0.11245E+01 0.10445E+01 0.10855E+01 0.10285E+01

Table 35: Ratio of the average square of the distances, suspects vs. true nearest neighbors.
Hamming distribution, number of requested nearest neighbors: k = 60, number of points:
N = 30 · 212, dimensionality: d, number of iterations: T (see Section 5.2.1). Corresponds
to Figure 14(a).

93

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.41318E+00 0.98505E+00 0.53338E+00 0.99696E+00
20 0.22274E+00 0.88490E+00 0.40937E+00 0.99878E+00
25 0.16532E+00 0.81406E+00 0.35550E+00 0.99457E+00
30 0.12382E+00 0.71557E+00 0.30065E+00 0.97838E+00
35 0.98486E-01 0.63265E+00 0.25833E+00 0.94189E+00
40 0.84280E-01 0.57543E+00 0.23220E+00 0.90106E+00
45 0.74800E-01 0.52942E+00 0.21419E+00 0.85861E+00
50 0.66383E-01 0.48848E+00 0.19832E+00 0.81304E+00
55 0.59393E-01 0.45616E+00 0.18191E+00 0.77301E+00
60 0.55379E-01 0.42870E+00 0.17146E+00 0.73556E+00
65 0.50710E-01 0.40249E+00 0.15935E+00 0.70018E+00
70 0.46719E-01 0.37967E+00 0.15110E+00 0.66678E+00
75 0.44480E-01 0.36307E+00 0.14320E+00 0.63802E+00
80 0.41960E-01 0.34641E+00 0.13751E+00 0.61269E+00
85 0.38536E-01 0.33228E+00 0.12883E+00 0.58599E+00
90 0.37896E-01 0.31899E+00 0.12721E+00 0.56366E+00
95 0.35876E-01 0.30679E+00 0.12101E+00 0.54250E+00
100 0.34416E-01 0.29655E+00 0.11705E+00 0.52529E+00
110 0.32026E-01 0.27749E+00 0.11006E+00 0.49171E+00
120 0.29589E-01 0.26338E+00 0.10390E+00 0.46439E+00
130 0.27699E-01 0.25042E+00 0.97856E-01 0.43819E+00
140 0.26663E-01 0.23817E+00 0.93993E-01 0.41717E+00
150 0.25266E-01 0.22924E+00 0.90890E-01 0.39934E+00
160 0.24896E-01 0.22149E+00 0.88123E-01 0.38320E+00
170 0.23423E-01 0.21284E+00 0.84113E-01 0.36838E+00
180 0.22986E-01 0.20583E+00 0.82203E-01 0.35423E+00
190 0.22259E-01 0.20177E+00 0.79663E-01 0.34573E+00
200 0.21403E-01 0.19474E+00 0.77773E-01 0.33330E+00

Table 36: Proportion of suspects among true nearest neighbors. Hamming distribution,
number of requested nearest neighbors: k = 60, number of points: N = 30 · 212, dimension-
ality: d, number of iterations: T (see Section 5.2.1). Corresponds to Figure 14(b).

94

50 100 150 200

1

1.1

1.2

1.3

1.4

1.5

1.6

d

D
su

sp
 /

D
tr

ue
Hamming, k = 60

(a) Ratio of the average square of the distances, suspects vs. true nearest neighbors
(see Table 35).

50 100 150 200
0

0.2

0.4

0.6

0.8

1

d

pr
op

or
tio

n

Hamming, k = 60

(b) Proportion of suspects among true nearest neighbors (see Table 36).

Figure 14: Hamming distribution, number of requested nearest neighbors: k = 60, number
of points: N = 30 · 212, dimensionality: d (see Section 5.2.1). RANN parameters: one
iteration without supercharging (circles), one iteration with supercharging (triangles), ten
iterations without supercharging (squares), ten iterations with supercharging (plus signs).

95

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.16841E+01 0.19641E+02 0.53235E+01 0.23499E+02
20 0.18560E+01 0.21340E+02 0.59924E+01 0.25670E+02
25 0.20328E+01 0.23001E+02 0.63996E+01 0.27706E+02
30 0.21720E+01 0.24441E+02 0.68156E+01 0.29257E+02
35 0.23472E+01 0.26242E+02 0.73429E+01 0.31437E+02
40 0.25098E+01 0.27583E+02 0.76684E+01 0.32923E+02
45 0.26626E+01 0.29383E+02 0.82461E+01 0.35099E+02
50 0.28010E+01 0.30864E+02 0.89230E+01 0.37105E+02
55 0.29762E+01 0.32806E+02 0.95013E+01 0.39222E+02
60 0.31122E+01 0.34600E+02 0.99013E+01 0.41115E+02
65 0.33537E+01 0.36386E+02 0.10378E+02 0.43543E+02
70 0.34786E+01 0.37585E+02 0.10748E+02 0.44958E+02
75 0.36433E+01 0.39345E+02 0.11162E+02 0.47113E+02
80 0.37969E+01 0.40535E+02 0.11525E+02 0.48669E+02
85 0.39474E+01 0.42310E+02 0.11928E+02 0.50706E+02
90 0.40850E+01 0.43683E+02 0.12373E+02 0.52275E+02
95 0.42675E+01 0.45441E+02 0.12763E+02 0.54359E+02
100 0.44034E+01 0.46909E+02 0.13165E+02 0.55826E+02
110 0.47162E+01 0.49976E+02 0.13929E+02 0.59402E+02
120 0.50298E+01 0.53142E+02 0.14754E+02 0.62900E+02
130 0.55699E+01 0.58540E+02 0.16048E+02 0.69020E+02
140 0.58763E+01 0.61584E+02 0.16889E+02 0.72862E+02
150 0.62076E+01 0.64509E+02 0.17671E+02 0.76283E+02
160 0.65787E+01 0.68154E+02 0.18541E+02 0.80897E+02
170 0.68347E+01 0.70952E+02 0.19205E+02 0.84180E+02
180 0.71187E+01 0.73936E+02 0.20049E+02 0.87649E+02
190 0.74629E+01 0.77764E+02 0.20731E+02 0.91211E+02
200 0.77892E+01 0.80588E+02 0.21588E+02 0.95184E+02

Table 37: CPU time of RANN, in seconds. Normal distribution, number of requested
nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 15.

96

50 100 150 200
0

20

40

60

80

100

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Normal, k = 15

Figure 15: CPU time of RANN, in seconds. Normal distribution, number of requested near-
est neighbors: k = 15, number of points: N = 30 ·212, dimensionality: d (see Section 5.2.1).
RANN parameters: one iteration without supercharging (circles), one iteration with su-
percharging (triangles), ten iterations without supercharging (squares), ten iterations with
supercharging (plus signs). See Table 37.

97

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.16800E+01 0.19554E+02 0.53939E+01 0.23570E+02
20 0.18521E+01 0.21296E+02 0.60388E+01 0.25670E+02
25 0.20240E+01 0.23153E+02 0.65108E+01 0.27934E+02
30 0.21760E+01 0.24474E+02 0.69612E+01 0.29611E+02
35 0.23625E+01 0.26339E+02 0.75244E+01 0.31913E+02
40 0.24929E+01 0.27748E+02 0.81540E+01 0.33944E+02
45 0.26746E+01 0.29378E+02 0.84429E+01 0.35687E+02
50 0.28177E+01 0.30769E+02 0.91421E+01 0.37933E+02
55 0.29817E+01 0.32566E+02 0.96429E+01 0.40222E+02
60 0.31209E+01 0.34278E+02 0.10021E+02 0.41723E+02
65 0.33586E+01 0.36430E+02 0.10501E+02 0.44467E+02
70 0.34705E+01 0.37446E+02 0.10885E+02 0.45834E+02
75 0.36490E+01 0.39160E+02 0.11313E+02 0.48007E+02
80 0.38025E+01 0.40603E+02 0.11726E+02 0.49677E+02
85 0.39649E+01 0.42307E+02 0.12211E+02 0.51402E+02
90 0.40938E+01 0.43682E+02 0.12569E+02 0.53075E+02
95 0.42651E+01 0.45474E+02 0.12966E+02 0.55210E+02
100 0.44154E+01 0.46762E+02 0.13407E+02 0.56916E+02
110 0.47298E+01 0.49882E+02 0.14215E+02 0.60569E+02
120 0.50226E+01 0.53041E+02 0.15076E+02 0.64178E+02
130 0.55803E+01 0.58315E+02 0.16319E+02 0.70387E+02
140 0.58860E+01 0.61530E+02 0.17154E+02 0.74206E+02
150 0.62187E+01 0.64512E+02 0.17693E+02 0.77683E+02
160 0.65763E+01 0.68397E+02 0.18721E+02 0.81965E+02
170 0.68300E+01 0.70902E+02 0.19548E+02 0.84978E+02
180 0.71420E+01 0.73972E+02 0.20314E+02 0.88509E+02
190 0.74572E+01 0.77320E+02 0.21080E+02 0.92459E+02
200 0.78101E+01 0.80741E+02 0.21854E+02 0.96378E+02

Table 38: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 16.

98

50 100 150 200
0

20

40

60

80

100

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Uniform, k = 15

Figure 16: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 38.

99

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.16512E+01 0.19257E+02 0.47027E+01 0.23294E+02
20 0.18409E+01 0.21192E+02 0.58779E+01 0.25666E+02
25 0.20168E+01 0.23051E+02 0.64611E+01 0.27779E+02
30 0.21617E+01 0.24350E+02 0.69212E+01 0.29352E+02
35 0.23633E+01 0.26306E+02 0.74836E+01 0.31671E+02
40 0.25026E+01 0.27616E+02 0.78253E+01 0.33134E+02
45 0.26674E+01 0.29395E+02 0.83901E+01 0.35385E+02
50 0.28097E+01 0.30784E+02 0.91221E+01 0.37393E+02
55 0.29881E+01 0.32604E+02 0.96853E+01 0.39769E+02
60 0.31146E+01 0.33965E+02 0.10155E+02 0.41201E+02
65 0.33570E+01 0.36427E+02 0.10613E+02 0.43955E+02
70 0.34761E+01 0.37530E+02 0.11002E+02 0.45316E+02
75 0.36521E+01 0.39284E+02 0.11409E+02 0.47319E+02
80 0.37898E+01 0.40575E+02 0.11845E+02 0.48776E+02
85 0.39585E+01 0.42398E+02 0.12170E+02 0.50920E+02
90 0.40891E+01 0.44195E+02 0.12552E+02 0.52459E+02
95 0.42698E+01 0.45803E+02 0.12981E+02 0.54579E+02
100 0.44306E+01 0.47323E+02 0.13397E+02 0.56222E+02
110 0.47586E+01 0.50047E+02 0.14154E+02 0.59827E+02
120 0.50715E+01 0.53113E+02 0.15028E+02 0.63369E+02
130 0.55883E+01 0.58432E+02 0.16317E+02 0.69569E+02
140 0.59236E+01 0.61771E+02 0.17180E+02 0.73464E+02
150 0.62507E+01 0.64770E+02 0.17939E+02 0.76823E+02
160 0.66155E+01 0.68563E+02 0.18959E+02 0.81105E+02
170 0.68475E+01 0.71374E+02 0.19497E+02 0.84321E+02
180 0.71403E+01 0.73979E+02 0.20268E+02 0.87701E+02
190 0.74796E+01 0.77415E+02 0.20993E+02 0.91752E+02
200 0.77908E+01 0.80367E+02 0.21886E+02 0.95426E+02

Table 39: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 17.

100

50 100 150 200
0

20

40

60

80

100

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Hamming, k = 15

Figure 17: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 15, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 39.

101

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.30362E+01 0.36389E+02 0.15610E+02 0.50560E+02
20 0.32753E+01 0.38751E+02 0.17748E+02 0.55101E+02
25 0.35289E+01 0.41325E+02 0.19073E+02 0.58537E+02
30 0.37170E+01 0.43187E+02 0.20312E+02 0.61256E+02
35 0.39890E+01 0.45930E+02 0.21888E+02 0.65618E+02
40 0.41803E+01 0.47827E+02 0.22787E+02 0.68144E+02
45 0.44355E+01 0.50294E+02 0.24597E+02 0.72064E+02
50 0.46274E+01 0.52444E+02 0.26727E+02 0.76611E+02
55 0.48891E+01 0.55008E+02 0.28456E+02 0.80371E+02
60 0.50730E+01 0.56699E+02 0.29494E+02 0.83657E+02
65 0.53971E+01 0.59884E+02 0.30714E+02 0.88326E+02
70 0.55946E+01 0.61648E+02 0.31851E+02 0.90718E+02
75 0.58180E+01 0.64082E+02 0.33000E+02 0.94441E+02
80 0.60507E+01 0.66327E+02 0.34237E+02 0.97410E+02
85 0.62492E+01 0.68626E+02 0.35365E+02 0.10099E+03
90 0.65011E+01 0.70388E+02 0.36562E+02 0.10390E+03
95 0.67035E+01 0.72870E+02 0.37750E+02 0.10808E+03
100 0.70540E+01 0.74795E+02 0.39048E+02 0.11003E+03
110 0.73308E+01 0.79740E+02 0.41098E+02 0.11632E+03
120 0.77685E+01 0.84022E+02 0.43589E+02 0.12250E+03
130 0.85925E+01 0.91645E+02 0.47495E+02 0.13403E+03
140 0.90205E+01 0.96453E+02 0.49945E+02 0.14121E+03
150 0.94486E+01 0.10049E+03 0.52062E+02 0.14682E+03
160 0.99445E+01 0.10555E+03 0.54531E+02 0.15357E+03
170 0.10346E+02 0.10981E+03 0.56565E+02 0.15941E+03
180 0.10785E+02 0.11410E+03 0.58916E+02 0.16558E+03
190 0.11222E+02 0.11858E+03 0.60988E+02 0.17194E+03
200 0.11662E+02 0.12297E+03 0.63433E+02 0.17852E+03

Table 40: CPU time of RANN, in seconds. Normal distribution, number of requested
nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 18.

102

50 100 150 200
0

50

100

150

200

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Normal, k = 30

Figure 18: CPU time of RANN, in seconds. Normal distribution, number of requested near-
est neighbors: k = 30, number of points: N = 30 ·212, dimensionality: d (see Section 5.2.1).
RANN parameters: one iteration without supercharging (circles), one iteration with su-
percharging (triangles), ten iterations without supercharging (squares), ten iterations with
supercharging (plus signs). See Table 40.

103

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.30402E+01 0.36516E+02 0.15825E+02 0.51530E+02
20 0.32730E+01 0.39109E+02 0.18000E+02 0.55990E+02
25 0.35354E+01 0.41727E+02 0.19569E+02 0.59828E+02
30 0.37329E+01 0.43465E+02 0.20940E+02 0.62946E+02
35 0.39962E+01 0.46315E+02 0.22693E+02 0.67047E+02
40 0.41939E+01 0.48228E+02 0.24750E+02 0.71141E+02
45 0.44434E+01 0.50661E+02 0.25507E+02 0.74180E+02
50 0.46299E+01 0.52813E+02 0.27855E+02 0.78759E+02
55 0.48986E+01 0.55359E+02 0.29619E+02 0.83082E+02
60 0.51002E+01 0.57049E+02 0.31129E+02 0.86867E+02
65 0.54163E+01 0.60425E+02 0.32379E+02 0.90774E+02
70 0.56011E+01 0.61875E+02 0.33144E+02 0.93301E+02
75 0.58212E+01 0.64433E+02 0.34599E+02 0.97346E+02
80 0.60860E+01 0.66384E+02 0.36398E+02 0.10075E+03
85 0.62668E+01 0.68991E+02 0.37042E+02 0.10395E+03
90 0.64963E+01 0.70667E+02 0.37865E+02 0.10649E+03
95 0.67108E+01 0.74159E+02 0.39160E+02 0.10924E+03
100 0.69428E+01 0.75247E+02 0.40456E+02 0.11261E+03
110 0.73829E+01 0.80046E+02 0.42766E+02 0.11890E+03
120 0.78316E+01 0.84200E+02 0.45339E+02 0.12542E+03
130 0.85804E+01 0.91940E+02 0.49168E+02 0.13647E+03
140 0.90374E+01 0.96741E+02 0.51775E+02 0.14350E+03
150 0.94582E+01 0.10082E+03 0.53883E+02 0.14963E+03
160 0.99951E+01 0.10586E+03 0.56320E+02 0.15644E+03
170 0.10389E+02 0.11049E+03 0.58681E+02 0.16286E+03
180 0.10827E+02 0.11494E+03 0.61298E+02 0.16914E+03
190 0.11241E+02 0.11926E+03 0.63835E+02 0.17507E+03
200 0.11719E+02 0.12427E+03 0.66291E+02 0.18172E+03

Table 41: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 19.

104

50 100 150 200
0

50

100

150

200

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Uniform, k = 30

Figure 19: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 41.

105

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.29617E+01 0.35694E+02 0.13571E+02 0.48937E+02
20 0.32522E+01 0.38923E+02 0.17229E+02 0.55115E+02
25 0.35265E+01 0.41273E+02 0.19212E+02 0.59173E+02
30 0.37218E+01 0.43256E+02 0.20744E+02 0.62250E+02
35 0.39882E+01 0.46204E+02 0.22524E+02 0.66387E+02
40 0.41898E+01 0.48176E+02 0.23459E+02 0.69089E+02
45 0.44298E+01 0.50439E+02 0.25386E+02 0.73380E+02
50 0.46283E+01 0.52906E+02 0.27769E+02 0.77932E+02
55 0.48859E+01 0.55009E+02 0.29510E+02 0.82147E+02
60 0.50746E+01 0.56896E+02 0.31103E+02 0.85367E+02
65 0.54346E+01 0.60585E+02 0.32373E+02 0.89628E+02
70 0.55634E+01 0.62415E+02 0.33588E+02 0.92137E+02
75 0.58747E+01 0.64563E+02 0.34787E+02 0.95853E+02
80 0.60012E+01 0.66967E+02 0.36194E+02 0.98881E+02
85 0.63036E+01 0.68689E+02 0.37272E+02 0.10237E+03
90 0.64756E+01 0.70923E+02 0.38310E+02 0.10513E+03
95 0.67444E+01 0.73304E+02 0.39702E+02 0.10859E+03
100 0.69348E+01 0.75297E+02 0.41019E+02 0.11209E+03
110 0.73468E+01 0.80056E+02 0.43354E+02 0.11864E+03
120 0.77956E+01 0.84297E+02 0.45866E+02 0.12497E+03
130 0.85812E+01 0.92396E+02 0.49855E+02 0.13589E+03
140 0.90557E+01 0.97126E+02 0.52439E+02 0.14279E+03
150 0.95045E+01 0.10120E+03 0.54631E+02 0.14897E+03
160 0.99925E+01 0.10623E+03 0.57608E+02 0.15667E+03
170 0.10437E+02 0.11046E+03 0.59366E+02 0.16204E+03
180 0.10881E+02 0.11490E+03 0.61689E+02 0.16828E+03
190 0.11320E+02 0.11896E+03 0.63896E+02 0.17432E+03
200 0.11757E+02 0.12382E+03 0.66527E+02 0.18153E+03

Table 42: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 20.

106

50 100 150 200
0

50

100

150

200

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Hamming, k = 30

Figure 20: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 30, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 42.

107

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.58676E+01 0.72176E+02 0.49055E+02 0.12421E+03
20 0.62324E+01 0.76600E+02 0.56407E+02 0.13571E+03
25 0.66444E+01 0.80075E+02 0.60917E+02 0.14450E+03
30 0.69580E+01 0.83355E+02 0.65214E+02 0.15213E+03
35 0.73668E+01 0.87405E+02 0.70780E+02 0.16092E+03
40 0.76644E+01 0.90187E+02 0.73879E+02 0.16677E+03
45 0.80669E+01 0.94225E+02 0.80164E+02 0.17785E+03
50 0.83533E+01 0.99186E+02 0.87249E+02 0.19041E+03
55 0.87629E+01 0.10122E+03 0.93167E+02 0.19913E+03
60 0.90342E+01 0.10427E+03 0.97772E+02 0.20788E+03
65 0.94982E+01 0.10871E+03 0.10209E+03 0.21586E+03
70 0.97805E+01 0.11135E+03 0.10595E+03 0.22285E+03
75 0.10161E+02 0.11521E+03 0.11038E+03 0.23128E+03
80 0.10463E+02 0.11927E+03 0.11431E+03 0.24070E+03
85 0.10853E+02 0.12214E+03 0.11878E+03 0.24621E+03
90 0.11149E+02 0.12526E+03 0.12294E+03 0.25462E+03
95 0.11593E+02 0.12890E+03 0.12729E+03 0.26190E+03
100 0.11833E+02 0.13155E+03 0.13173E+03 0.26854E+03
110 0.12526E+02 0.13952E+03 0.13923E+03 0.28386E+03
120 0.13219E+02 0.14550E+03 0.14800E+03 0.29806E+03
130 0.14458E+02 0.15834E+03 0.16218E+03 0.32369E+03
140 0.15152E+02 0.16588E+03 0.17150E+03 0.34014E+03
150 0.15820E+02 0.17197E+03 0.18191E+03 0.35363E+03
160 0.16575E+02 0.17894E+03 0.18977E+03 0.36899E+03
170 0.17192E+02 0.18669E+03 0.19551E+03 0.38423E+03
180 0.17900E+02 0.19265E+03 0.20670E+03 0.39853E+03
190 0.18646E+02 0.19982E+03 0.21455E+03 0.41236E+03
200 0.19329E+02 0.20716E+03 0.22096E+03 0.43119E+03

Table 43: CPU time of RANN, in seconds. Normal distribution, number of requested
nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 21.

108

50 100 150 200
0

100

200

300

400

500

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Normal, k = 60

Figure 21: CPU time of RANN, in seconds. Normal distribution, number of requested near-
est neighbors: k = 60, number of points: N = 30 ·212, dimensionality: d (see Section 5.2.1).
RANN parameters: one iteration without supercharging (circles), one iteration with su-
percharging (triangles), ten iterations without supercharging (squares), ten iterations with
supercharging (plus signs). See Table 43.

109

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.58747E+01 0.76515E+02 0.49700E+02 0.12614E+03
20 0.62612E+01 0.79921E+02 0.56952E+02 0.13693E+03
25 0.66924E+01 0.80649E+02 0.62528E+02 0.14635E+03
30 0.69988E+01 0.84404E+02 0.67305E+02 0.15455E+03
35 0.74173E+01 0.88295E+02 0.73479E+02 0.16512E+03
40 0.76989E+01 0.90638E+02 0.80773E+02 0.17640E+03
45 0.81100E+01 0.94445E+02 0.83493E+02 0.18245E+03
50 0.84148E+01 0.98394E+02 0.91506E+02 0.19622E+03
55 0.88294E+01 0.10166E+03 0.97369E+02 0.20582E+03
60 0.91166E+01 0.10501E+03 0.10275E+03 0.21459E+03
65 0.95678E+01 0.10904E+03 0.10743E+03 0.22386E+03
70 0.98661E+01 0.11204E+03 0.11164E+03 0.23056E+03
75 0.10239E+02 0.11556E+03 0.11634E+03 0.23885E+03
80 0.10512E+02 0.11947E+03 0.12134E+03 0.24753E+03
85 0.10958E+02 0.12264E+03 0.12519E+03 0.25461E+03
90 0.11225E+02 0.12646E+03 0.12906E+03 0.26148E+03
95 0.11677E+02 0.13030E+03 0.13403E+03 0.27049E+03
100 0.11929E+02 0.13292E+03 0.13896E+03 0.27779E+03
110 0.12633E+02 0.14056E+03 0.14692E+03 0.29488E+03
120 0.13317E+02 0.14736E+03 0.15700E+03 0.31244E+03
130 0.15007E+02 0.15950E+03 0.16986E+03 0.33985E+03
140 0.15938E+02 0.16711E+03 0.17959E+03 0.35967E+03
150 0.16692E+02 0.17386E+03 0.18797E+03 0.37855E+03
160 0.17480E+02 0.18119E+03 0.19612E+03 0.38305E+03
170 0.18108E+02 0.18900E+03 0.20503E+03 0.40063E+03
180 0.18933E+02 0.19533E+03 0.21354E+03 0.41557E+03
190 0.19673E+02 0.20188E+03 0.22140E+03 0.42458E+03
200 0.20360E+02 0.21025E+03 0.23060E+03 0.44012E+03

Table 44: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 22.

110

50 100 150 200
0

100

200

300

400

500

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Uniform, k = 60

Figure 22: CPU time of RANN, in seconds. Uniform distribution, number of requested
nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 44.

111

without supercharging with supercharging

d T = 1 T = 10 T = 1 T = 10

15 0.57156E+01 0.71135E+02 0.44995E+02 0.11480E+03
20 0.62044E+01 0.75629E+02 0.55163E+02 0.13496E+03
25 0.66308E+01 0.80037E+02 0.62056E+02 0.14588E+03
30 0.69628E+01 0.83369E+02 0.67504E+02 0.15416E+03
35 0.73748E+01 0.88315E+02 0.74015E+02 0.16485E+03
40 0.76893E+01 0.90244E+02 0.77513E+02 0.17105E+03
45 0.80757E+01 0.94592E+02 0.84503E+02 0.18265E+03
50 0.83717E+01 0.97469E+02 0.92952E+02 0.19530E+03
55 0.87700E+01 0.10147E+03 0.99125E+02 0.20590E+03
60 0.90806E+01 0.10436E+03 0.10485E+03 0.21473E+03
65 0.95413E+01 0.10989E+03 0.10955E+03 0.22339E+03
70 0.98062E+01 0.11202E+03 0.11387E+03 0.23033E+03
75 0.10248E+02 0.11596E+03 0.11885E+03 0.23848E+03
80 0.10496E+02 0.11834E+03 0.12371E+03 0.24632E+03
85 0.10889E+02 0.12250E+03 0.12780E+03 0.25388E+03
90 0.11184E+02 0.12554E+03 0.13166E+03 0.26092E+03
95 0.11572E+02 0.13013E+03 0.13670E+03 0.26946E+03
100 0.11896E+02 0.13236E+03 0.14170E+03 0.27728E+03
110 0.12561E+02 0.13969E+03 0.14995E+03 0.29227E+03
120 0.13253E+02 0.14637E+03 0.15930E+03 0.30812E+03
130 0.14530E+02 0.15933E+03 0.17376E+03 0.33307E+03
140 0.15226E+02 0.16603E+03 0.18334E+03 0.34908E+03
150 0.15893E+02 0.17305E+03 0.19167E+03 0.36411E+03
160 0.16645E+02 0.18066E+03 0.20232E+03 0.38148E+03
170 0.17271E+02 0.18735E+03 0.20904E+03 0.39435E+03
180 0.17980E+02 0.19464E+03 0.21792E+03 0.40907E+03
190 0.18663E+02 0.20173E+03 0.22593E+03 0.42625E+03
200 0.19358E+02 0.20787E+03 0.23563E+03 0.44319E+03

Table 45: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality: d, number of
iterations: T (see Section 5.2.1). Corresponds to Figure 23.

112

50 100 150 200
0

100

200

300

400

500

d

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

Hamming, k = 60

Figure 23: CPU time of RANN, in seconds. Hamming distribution, number of requested
nearest neighbors: k = 60, number of points: N = 30 · 212, dimensionality: d (see Sec-
tion 5.2.1). RANN parameters: one iteration without supercharging (circles), one iteration
with supercharging (triangles), ten iterations without supercharging (squares), ten itera-
tions with supercharging (plus signs). See Table 45.

113

	Introduction
	Mathematical Preliminaries
	Euclidean Space
	Analysis
	Probability
	Pseudorandom orthogonal transformations

	Analytical Apparatus
	The Randomized Approximate Nearest Neighbors algorithm (RANN)
	The Nearest Neighbor Problem
	Informal description of the algorithm
	Initial selection
	``Supercharging''
	Overview
	Query for a new point

	Detailed description of the algorithm
	Initialization
	A single iteration of the algorithm
	Supercharging
	Query for a new point

	Cost analysis
	Performance analysis
	Average distance to true nearest neighbors
	Distances to points in a given quadrant
	Average distance to suspects
	Proportion of suspects among true nearest neighbors

	Numerical Results
	Numerical illustration of the analysis
	Experiment 1: distance to true nearest neighbors
	Experiment 2: distance to suspects
	Experiment 3: proportion of suspects among true nearest neighbors
	Description of Figures 2-5
	Observations

	Illustration of the performance of the algorithm
	Experiment 4: performance of RANN
	Observations

	Miscellaneous
	Version of RANN for highly asymmetric distributions

